Mathematical Modelling and Applications

2018; 3(1): 9-15

http://www.sciencepublishinggroup.com/j/mma

doi: 10.11648/j.mma.20180301.12

ISSN: 2575-1786 (Print); ISSN: 2575-1794 (Online)

Three Vertex and Parallelograms in the Affine Plane: Similarity and Addition Abelian Groups of Similarly *n*-Vertexes in the Desargues Affine Plane

Orgest Zaka

Department of Mathematics, Faculty of Technical Science, University "Ismail QEMALI" of Vlora, Vlora, Albania

Email address:

gertizaka@yahoo.com

To cite this article:

Orgest Zaka. Three Vertex and Parallelograms in the Affine Plane: Similarity and Addition Abelian Groups of Similarly *n*-Vertexes in the Desargues Affine Plane. *Mathematical Modelling and Applications*. Vol. 3, No. 1, 2018, pp. 9-15. doi: 10.11648/j.mma.20180301.12

Received: May 14, 2017; Accepted: December 18, 2017; Published: January 8, 2018

Abstract: In this article will do a' concept generalization *n*-gon. By renouncing the metrics in much axiomatic geometry, the need arises for a new label to this concept. In this paper will use the meaning of *n*-vertexes. As you know in affine and projective plane simply set of points, blocks and incidence relation, which is argued in [1], [2], [3]. In this paper will focus on affine plane. Will describe the meaning of the similarity *n*-vertexes. Will determine the addition of similar three-vertexes in Desargues affine plane, which is argued in [1], [2], [3], and show that this set of three-vertexes forms an commutative group associated with additions of three-vertexes. At the end of this paperare making a generalization of the meeting of similarity *n*-vertexes in Desargues affine plane, also here it turns out to have a commutative group, associated with additions of similarity *n*-vertexes.

Keyword: *n*-vertexes, Desargues Affine Plane, Similarity of *n*-Vertexes, Abelian Group

1. Introduction

In Euclidian geometry use the term three-angle and non three-vertex, this because the fact that the Euclidean geometry think of associated with metrics, which are argued in [4], [6], [7]. In this paper will use the "three-Vertex" term, by renouncing the metric. Will generalize so its own meaning in the Euclidean case. With the help of parallelism [1], [2], [3] will give meaning of similarity and will see that have a generalization of the similarity of the figures in the Euclidean plane. By following the logic of additions of points in a line of Desargues affine plane submitted to [3], herewill show that analogously this meaning may also extend to the addition of similarity three-vertex in Desargues affine plane, moreover extend this concept for the similarity *n*-vertexes to the Desargues affine plane.

The aim is to see if the move to three-vertexes as well as to n-vertexes has the group's properties, which are arguing that the best in [5], [8], [9].

2. *n*-Vertexes in Affine Plane and Their Similarity

2.1. 3-Vertexes and Their Similarity

Let's have the affine plane $\mathcal{A} = (\mathcal{P}, \mathcal{L}, \mathcal{I})$.

Definition 2.1.1 *Three-Vertex will called an ordered trio of non-collinear points* (A,B,C) *in an affine plane.*

Definition 2.1.2 Two three-vertexes (A_1, B_1, C_1) and (A_2, B_2, C_2) will call similar if they meet conditions:

 $A_1B_1//A_2B_2$; $A_1C_1//A_2C_2$ and $B_1C_1//B_2C_2$

Example 2.1.1 In affine plane of the second order have the similar three-vertices (Figure 1):

 $(A,D,C) \approx (B,C,D)$: because, $AD \parallel BC;DC \parallel CD;AC \parallel BD$

 $(A,B,D) \approx (C,D,B)$: because, $AB \parallel CD; BD \parallel DB; AD \parallel CB$

$$(A,B,D) \approx (D,C,A)$$
: because,
 $AB \parallel DC; BD \parallel CA; AD \parallel DA$

Figure 1. The similar three-vertexes in affine plane of order 2.

Example 2.1.2: In the third order affine plane.

$$(2,3,9)\approx (7,9,3)$$
, because: $\ell_{(2,3)}\|\ell_{(7,9)};\ell_{(2,9)}\|\ell_{(7,3)};\ell_{(3,9)}\|\ell_{(9,3)};$

Figure 2. Two similar three-vertexes in affine plane of order 3.

Proposition 2.1.1: The similarity of the three-vertexes is equivalence relation.

Proof: 1) It is clear that every three-vertexes (A,B,C) is similar to yourself.

$$(A, B, C) \approx (A, B, C)$$

2) If three-vertexes $(A_1,B_1,C_1) \approx (A_2,B_2,C_2)$, are similar then also three-vertexes $(A_2,B_2,C_2)\approx (A_1,B_1,C_1)$, are similarity since from:

$$A_1B_1//A_2B_2$$
; $A_1C_1//A_2C_2$; $B_1C_1//B_2C_2 \Rightarrow A_2B_2//A_1B_1$; $A_2C_2//A_1C_1$; $B_2C_2//B_1C_1$.

3) If $(A_1,B_1,C_1)\approx (A_2,B_2,C_2)$, and three-vertexes $(A_2,B_2,C_2)\approx (A_3,B_3,C_3)$ then have to $(A_1,B_1,C_1)\approx (A_3,B_3,C_3)$, because parallelism in the affine plane is equivalence relation, which is described in [2], [3], [4].

So would have to:

$$A_1B_1//A_2B_2$$
; $A_1C_1//A_2C_2$; $B_1C_1//B_2C_2$

and

$$A_2B_2//A_3B_3$$
; $A_2C_2//A_3C_3$; $B_2C_2//B_3C_3$

since the parallelism in the affine plane is equivalence relation then will have to:

$$A_1B_1//A_2B_2$$
 and $A_2B_2//A_3B_3 \Longrightarrow A_1B_1//A_3B_3$;
 $A_1C_1//A_2C_2$ and $A_2C_2//A_3C_3 \Longrightarrow A_1C_1//A_3C_3$;
 $B_1C_1//B_2C_2$ and $B_2C_2//B_3C_3 \Longrightarrow B_1C_1//B_3C_3$.

Well,

$$(A_1,B_1,C_1)\approx (A_3,B_3,C_3).$$

2.2. 4-Vertexes

Definition 2.2.1: In affine plane A, a set of four-point three out of three not-collineary will call **4-vertexes**.

Definition 2.2.2: Two 4-vertexes ABCD and A'B'C'D' will call similar only if have the following parallels:

AB||A'B', BC||B'C', CD||C'D' and DA||D'A'.

2.3. Parallelograms

Definition 2.1.3: Parallelogram will call the ordered quartet of points (A,B,C,D) from \mathcal{P} , that meets the conditions: $AB/\!\!/CD$ and $BC/\!\!/AD$ the lines AC and BD are called the diagonal of parallelogram.

Example 2.2.1: In affine plane of the second order (Figure 3. a.) have the following parallelogram:

(A,D,B,C) with the diagonal AB and DC (Figure 3. b);

(A,B,D,C) with the diagonal AD and BC (Figure 3. c);

(A,B,C,D) with the diagonal AC and BD (Figure 3. d).

Figure 3. 4-parallelograms in the affine plane of order 2.

From the definition of parallelogram and the fact that parallelism is the equivalence relation is evident this Proposition:

Proposition 2.2.1: If you have two similar 4-vertexes, where each is parallelogram then another 4-vertexes will be parallelogram.

2.4. n-Vertexes

Definition 2.4.1: In affine plane A, a set of n-points non-

collinearly three out of three will call n-vertex.

Definition 2.4.2: Two *n*-vertexes $(A_1A_2...A_n)$ and $(B_1B_2...B_n)$ will call similar just if have the following parallelisms:

$$A_iA_j \parallel B_iB_j$$

$$\forall (i,j) \in \{(1,1),...,(1,n);(2,1),...,(2,n);...;(n,1),...,(n,n)\}.$$

3. The Addition of Similarity Three-Vertexes in the Desargues Affine Plane

Let's have two similarity three-vertexes (A_1,A_2,A_3) and (B_1,B_2,B_3) in the Desargues affine plane $\mathcal{A}_D=(\mathcal{P},\mathcal{L},\mathcal{I})$. Constructed the lines $A_1B_1,\ A_2B_2,\ A_3B_3$, since are in Desargues affine plane and the similarity of three-vertexes have to: $A_1A_2\|B_1B_2;\ A_2A_3\|B_2B_3;\ A_1A_3\|B_1B_3\Rightarrow$ the lines $A_1B_1,\ A_2B_2$ and A_3B_3 , or will be parallel or will cross the on a single point. Receive now a point $O_1\in\ A_1B_1$, and find points

O₂ and O₃ how:

$$O_2=A_2B_2\cap\ell_{A_1A_2}^{O_1}$$
 and $O_3=A_3B_3\cap\ell_{A_1A_2}^{O_1}$

So have obtained thus three-vertexes (O_1,O_2,O_3) , (points O_1 , O_2 and O_3 are non-collinearly, because from construction this three-vertexes will be similar with three-vertexes (A_1,A_2,A_3)) where $O_1 \in A_1B_1$, $O_2 \in A_2B_2$ and $O_3 \in A_3B_3$. This three-vertex called 'zero' three-vertex. So have three lines, to which each have its zero point. Now just as to [3], additions of the points of each line based on the algorithm of additions of points in a line in Desargues affine plans, and take:

$$C_1=A_1+B_1, C_2=A_2+B_2, C_3=A_3+B_3.$$
 (1)

Definition 3.1: The addition of two similarity three-vertexes (A_1,A_2,A_3) and (B_1,B_2,B_3) , called three-vertexes (C_1,C_2,C_3) , where the points (vertexes) C_1,C_2,C_3 . They found according to equation (1) (Figure 4).

Figure 4. The Addition of two similarity three-Vertexes in the Desargues Affine Plane.

From construction of three-vertexes as the addition of two similar three-vertexes have evident this Proposition:

Proposition 3.1 Three-vertexes that obtained as the sum of two similar three-vertexes (A_1,A_2,A_3) and (B_1,B_2,B_3) , it is similar to the first two.

Well

$$(A_1+B_1, A_2+B_2, A_3+B_3)\approx (A_1,A_2,A_3)$$

and

$$(A_1+B_1, A_2+B_2, A_3+B_3)\approx (B_1,B_2,B_3)$$

Proposition 3.2 The additions of non-similarity three-vertexes it may not be a three-vertexes.

Proof: If renounce above from addition algorithm of the similar three-vertexes. In the same logic, are additions together two of whatever three-vertexes. Let's have two whatever three-vertexes (A_1,A_2,A_3) and (B_1,B_2,B_3) in the affine plane $\mathcal{A} = (\mathcal{P},\mathcal{L},\mathcal{I})$. Construct the line A_1B_1 , A_2B_2 and A_3B_3 . Get a whatever three-vertexes (O_1,O_2,O_3) (the points O_1 , O_2 and O_3 are non-collinearly) where $O_1 \in A_1B_1$, $O_2 \in A_2B_2$ and $O_3 \in A_3B_3$. This three-vertexes called the 'zero' three-vertex. So have three lines, where, in each line have hers zero point. Now just as to [3], the addition points of every line based on the addition algorithm given to [3], and take: $C_1 = A_1 + B_1$, $C_2 = A_2 + B_2$ and $C_3 = A_3 + B_3$.

Figure 5. The Addition of two non-similarity three-Vertexes in the Desargues Affine Plane is a three-Vertex.

Defined in this way, it seems as if does not have a contradiction. But the veracity of this Proposition are presenting with the help of a simple anti-example, shown in the following figure.

Figure 6. The Addition of two non-similarity three-Vertexes in the Desargues Affine Plane is not a three-Vertex.

Remark 3.1: By following the addition algorithms for points in a line of Desargues affine plane, is sufficient to get only an auxiliary point P_1 , for this obedient from [3], for three sums can either take one three-vertexes (P_1,P_2,P_3) , wherein each point of three-vertexes be auxiliary point for the relevant sum.

Remark 3.2: Marked the set of three-vertexes in the Desargues affine plans with symbol $\mathcal{T}^{\mathcal{D}.Aff}$.

Remark 3.3: Marked the set of *similarity* three-vertexes in the Desargues affine plans with symbol $\mathcal{T}_{\approx}^{\mathcal{D}.Aff}$.

It is clear that: $\mathcal{T}_{\tilde{z}}^{\mathcal{D}.Aff} \subset \mathcal{T}^{\mathcal{D}.Aff}$.

Let us be (A_1,A_2,A_3) and (B_1,B_2,B_3) two whatsoever three-vertexes in the set $\mathcal{T}_{\approx}^{\mathcal{D}.Aff}$. I associate pairs

$$\lceil (A_1, A_2, A_3), (B_1, B_2, B_3) \rceil \in \mathcal{T}_{z}^{\mathcal{D}.Aff} \times \mathcal{T}_{z}^{\mathcal{D}.Aff},$$

three-vertex $(C_1,C_2,C_3) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}$, that the vertexes are determines with algorithm in [3]. According to the preceding Theorems, three-vertexes (C_1,C_2,C_3) is determined in single mode by [3].

Thus obtain an application

$$\mathcal{T}_{z}^{\mathcal{D}.Aff} \times \mathcal{T}_{z}^{\mathcal{D}.Aff} \to \mathcal{T}_{z}^{\mathcal{D}.Aff}$$
.

Definition 3.2: *In the above conditions, application*

$$+: \mathcal{T}_{z}^{\mathcal{D}.Aff} \times \mathcal{T}_{z}^{\mathcal{D}.Aff} \to \mathcal{T}_{z}^{\mathcal{D}.Aff},$$

defined by

$$ig[ig(A_1,A_2,A_3ig),ig(B_1,B_2,B_3ig)ig]\mapstoig(C_1,C_2,C_3ig)$$
 $orallig[ig(A_1,A_2,A_3ig),ig(B_1,B_2,B_3ig)ig]\in\mathcal{T}_z^{\mathcal{D}.Aff} imes\mathcal{T}_z^{\mathcal{D}.Aff}.$

The addition in $\mathcal{T}_{\approx}^{\mathcal{D}.Aff}$ according to this Definitions, can write

$$\forall (A_{1}, A_{2}, A_{3}), (B_{1}, B_{2}, B_{3}) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff},$$

$$1. \ P_{1} \notin A_{1}B_{1}, A_{2}B_{2}, A_{3}B_{3},$$

$$2. \ \ell_{A_{1}B_{1}}^{P_{1}} \cap \ell_{O_{1}P_{1}}^{A_{1}} = P_{2},$$

$$3. \ \ell_{P_{1}B_{1}}^{P_{2}} \cap A_{1}B_{1} = C_{1}.$$

$$4. \ \ell_{A_{2}B_{2}}^{P_{2}} \cap \ell_{O_{2}P_{1}}^{A_{2}} = P_{3},$$

$$5. \ \ell_{P_{1}B_{2}}^{P_{3}} \cap A_{2}B_{2} = C_{2}.$$

$$6. \ \ell_{A_{3}B_{3}}^{P_{1}} \cap \ell_{O_{3}P_{1}}^{A_{3}} = P_{4},$$

$$7. \ \ell_{P_{1}B_{3}}^{P_{4}} \cap A_{3}B_{3} = C_{3}.$$

$$\Leftrightarrow (A_{1}, A_{2}, A_{3}) + (B_{1}, B_{2}, B_{3}) = (C_{1}, C_{2}, C_{3}).$$

Theorem 3.1: For every two three-vertexes (A_1, A_2, A_3) , $(B_1, B_2, B_3) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}$, algorithm (2) determines the single three-vertexes $(C_1, C_2, C_3) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}$, which does **not depend** on the choice of hers auxiliary point P_1 .

Proof: From Theorem 2.1, in [3], have to addition of two points in a line of Desargues affine plane does not depend on the choice of hers auxiliary point. For this reason keep as auxiliary points for addition of pairs points, the auxiliary point P₁.

From Theorem 3.1, appears immediately true this

Proposition 3.3: Additions of three-vertexes in $\mathcal{T}_{\approx}^{\mathcal{D}.Aff}$ there are element **zero** the three-vertexes (O_1, O_2, O_3) :

$$\forall (A_{1}, A_{2}, A_{3}) \in \mathcal{T}^{\mathcal{D}.Aff},
(A_{1}, A_{2}, A_{3}) + (O_{1}, O_{2}, O_{3}) =
= (O_{1}, O_{2}, O_{3}) + (A_{1}, A_{2}, A_{3}) =
= (A_{1}, A_{2}, A_{3})$$
(3)

As well as worth and below Propositions.

Proposition 3.4: Additions of three-vertexes is commutative in $\mathcal{T}_{\sim}^{\mathcal{D}.Aff}$:

$$\forall (A_{1}, A_{2}, A_{3}), (B_{1}, B_{2}, B_{3}) \in \mathcal{T}^{\mathcal{D}.Aff}$$

$$(A_{1}, A_{2}, A_{3}) + (B_{1}, B_{2}, B_{3}) =$$

$$= (B_{1}, B_{2}, B_{3}) + (A_{1}, A_{2}, A_{3}).$$
(4)

Proof: By definition of additions of three-vertexes that

have:

$$(A_1, A_2, A_3) + (B_1, B_2, B_3) = (A_1 + B_1, A_2 + B_2, A_3 + B_3)$$

From Theorem 2.1, in [3], have that for every two points is a line in the Desargues affine plane the addition is commutative, and consequently have to:

$$(A_1, A_2, A_3) + (B_1, B_2, B_3) = (A_1 + B_1, A_2 + B_2, A_3 + B_3)$$

$$= (B_1 + A_1, B_2 + A_2, B_3 + A_3) = (B_1, B_2, B_3) + (A_1, A_2, A_3).$$

Proposition 3.5: Addition of three-vertexes is associative in $\mathcal{T}_{-}^{\mathcal{D}.Aff}$:

$$\forall (A_{1}, A_{2}, A_{3}), (B_{1}, B_{2}, B_{3}), (C_{1}, C_{2}, C_{3}) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}$$

$$(A_{1}, A_{2}, A_{3}) + [(B_{1}, B_{2}, B_{3}) + (C_{1}, C_{2}, C_{3})] =$$

$$= [(A_{1}, A_{2}, A_{3}) + (B_{1}, B_{2}, B_{3})] + (C_{1}, C_{2}, C_{3}).$$
(5)

Proof: Let's have three whatever three-vertexes

$$(A_1, A_2, A_3), (B_1, B_2, B_3), (C_1, C_2, C_3) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}$$

Appreciate now,

$$\begin{split} & \left(A_{1}, A_{2}, A_{3}\right) + \left[\left(B_{1}, B_{2}, B_{3}\right) + \left(C_{1}, C_{2}, C_{3}\right)\right] = \\ & = \left(A_{1}, A_{2}, A_{3}\right) + \left(B_{1} + C_{1}, B_{2} + C_{2}, B_{3} + C_{3}\right) \\ & = \left[A_{1} + \left(B_{1} + C_{1}\right), A_{2} + \left(B_{2} + C_{2}\right), A_{3} + \left(B_{3} + C_{3}\right)\right] \\ & = \left[\left(A_{1} + B_{1}\right) + C_{1}, \left(A_{2} + B_{2}\right) + C_{2}, \left(A_{3} + B_{3}\right) + C_{3}\right] \\ & = \left(A_{1} + B_{1}, A_{2} + B_{2}, A_{3} + B_{3}\right) + \left(C_{1}, C_{2}, C_{3}\right) \\ & = \left[\left(A_{1}, A_{2}, A_{3}\right) + \left(B_{1}, B_{2}, B_{3}\right)\right] + \left(C_{1}, C_{2}, C_{3}\right). \end{split}$$

Proposition 3.6: For every three-vertex in $\mathcal{T}_{\approx}^{\mathcal{D}.Aff}$ exists her **right symmetrical** according to addition:

$$\forall (A_1, A_2, A_3) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}, \exists \overline{(A_1, A_2, A_3)} \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff},$$
$$(A_1, A_2, A_3) + \overline{(A_1, A_2, A_3)} = (O_1, O_2, O_3) \tag{6}$$

Proof: Let us have whatever $(A_1, A_2, A_3) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}$, fix the 'zero' three-vertexes $(O_1, O_2, O_3) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}$ (which would be similar to three-vertexes (A_1, A_2, A_3)) if apply the Proposition 3. 4, in [3] pp34990, have that, for points A_1, A_2 and A_3 , find points respectively $\overline{A_1} \in O_1A_1, \overline{A_2} \in O_2A_2$ and $\overline{A_3} \in O_3A_3$ such that:

$$A_1 + \overline{A_1} = O_1; \ A_2 + \overline{A_2} = O_2; \ A_3 + \overline{A_3} = O_3.$$
Well $\exists (A_1, A_2, A_3) = (\overline{A_1}, \overline{A_2}, \overline{A_3}) \in \mathcal{T}_{\approx}^{\mathcal{D}.Aff}$ such that it:

$$(A_1, A_2, A_3) + \overline{(A_1, A_2, A_3)} = (O_1, O_2, O_3)$$

I summarize what was said earlier in this

Theorem 3.2: The Groupoid $\left(\mathcal{T}_{\approx}^{\mathcal{D}.Aff},+\right)$ is **commutative** (abelian) Group.

4. The Addition of Similarity *n*-Vertexes in the Desargues Affine Plane

Equally as addition of three-vertexes in Desargues affine plane, by the same logic, additions and *n*-vertexes in this plane.

Remark 4.1: The set of similarity n-vertexes in Desargues affine plane marked with symbol $\mathcal{N}_{\approx}^{\mathcal{D}.Aff}$.

The addition algorithm of n-vertexes, by analogy with addition algorithm of the three-vertexes are presenting below:

Let's have two whatever similarity *n*-vertexes in Desargues affine plane:

$$(A_1, A_2, A_3, ..., A_n), (B_1, B_2, B_3, ..., B_n) \in \mathcal{N}_{\approx}^{\mathcal{D}.Aff}$$

The definitions of the similarity of **n**-vertexes have the following parallelisms:

$$A_1A_2 \parallel B_1B_2, A_2A_3 \parallel B_2B_3, ..., A_{n-1}A_n \parallel B_{n-1}B_n, A_nA_1 \parallel B_nB_1$$

Constructed the lines A_1B_1 , A_2B_2 , A_3B_3 ,..., A_nB_n , since are in Desargues affine plane, and from the parallels the above, are the conditions of the Desargues theorem, it results that the above lines or crossing from a fixed point V or they have a bunch of parallel lines.

In both cases equally found the **zero** *n*-vertex. Take one first point $O_1 \in A_1B_1$, and then find all the other vertexes of n-vertexes how:

$$O_2 = A_2 B_2 \cap \ell_{A_1 A_2}^{O_1} \;, O_3 = A_3 B_3 \cap \ell_{A_1 A_3}^{O_1}, ..., O_n = A_n B_n \cap \ell_{A_1 A_n}^{O_1}$$

Definition 4.1: In the above conditions, application

$$+: \mathcal{N}_{\sim}^{\mathcal{D}.Aff} \times \mathcal{N}_{\sim}^{\mathcal{D}.Aff} \to \mathcal{N}_{\sim}^{\mathcal{D}.Aff}$$

defined by

$$[(A_1, A_2, ..., A_n), (B_1, B_2, ..., B_n)] \mapsto (C_1, C_2, ..., C_n)$$

 $\forall (A_1, A_2, A_3, ..., A_n), (B_1, B_2, B_3, ..., B_n) \in \mathcal{N}_z^{\mathcal{D}.Aff}$ call the addition in $\mathcal{N}_z^{\mathcal{D}.Aff}$ according to this Definitioni, can write the addition algorithm of the *n*-vertexes:

$$\forall (A_1, A_2, A_3, ..., A_n), (B_1, B_2, B_3, ..., B_n) \in \mathcal{N}_{\approx}^{\mathcal{D}.Aff}$$

1.
$$P_{1} \notin A_{1}B_{1}, A_{2}B_{2}, ..., A_{n}B_{n},$$

2.
$$\begin{bmatrix}
(i) \cdot \ell_{A_{1}B_{1}}^{P_{1}} \cap \ell_{O_{1}P_{1}}^{A_{1}} = P_{2}, \\
(ii) \cdot \ell_{P_{1}B_{1}}^{P_{2}} \cap A_{1}B_{1} = C_{1}
\end{bmatrix}$$
3.
$$\begin{bmatrix}
(i) \cdot \ell_{A_{2}B_{2}}^{P_{1}} \cap \ell_{O_{2}P_{1}}^{A_{2}} = P_{3}, \\
(ii) \cdot \ell_{P_{1}B_{2}}^{P_{2}} \cap A_{2}B_{2} = C_{2}
\end{bmatrix}$$
4.
$$\begin{bmatrix}
(i) \cdot \ell_{A_{3}B_{3}}^{P_{1}} \cap \ell_{O_{3}P_{1}}^{A_{3}} = P_{4}, \\
(ii) \cdot \ell_{P_{1}B_{3}}^{P_{4}} \cap A_{3}B_{3} = C_{3}. \\
\vdots$$

$$\vdots$$

$$n+1 \cdot \begin{bmatrix}
(i) \cdot \ell_{A_{n}B_{n}}^{P_{1}} \cap \ell_{O_{n}P_{1}}^{A_{n}} = P_{n+1}, \\
(ii) \cdot \ell_{P_{1}B_{n}}^{P_{n+1}} \cap A_{n}B_{n} = C_{n}.
\end{bmatrix}$$

$$\Leftrightarrow (A_{1}, A_{2}, ..., A_{n}) + (B_{1}, B_{2}, ..., B_{n}) = (C_{1}, C_{2}, ..., C_{n}).$$

And for *n*-vertexes, have true analog the statements had to three-vertexes (everything proved equally).

Well have the verities of following statements

Theorem 4.1: For every two n-vertexes $(A_1, A_2, ..., A_n)$, $(B_1, B_2, ..., B_n) \in \mathcal{N}_{\approx}^{\mathcal{D}.Aff}$, algorithm (7) determines the single three-vertexes $(C_1, C_2, ..., C_n) \in \mathcal{N}_{\approx}^{\mathcal{D}.Aff}$, which does not depend on the choice of hers auxiliary point P_1 .

From Theorem 4.1, appears immediately true this

Proposition 4.1: Additions of n-vertexes in $\mathcal{N}_{\approx}^{\mathcal{D}.Aff}$ there are element zero the three-vertexes $(O_1, O_2, ..., O_n)$:

$$\forall (A_{1}, A_{2}, ..., A_{n}) \in \mathcal{N}_{\approx}^{\mathcal{D}.Aff}, \exists (O_{1}, O_{2}, ..., O_{n}) \in \mathcal{N}_{\approx}^{\mathcal{D}.Aff}$$

$$(A_{1}, A_{2}, ..., A_{n}) + (O_{1}, O_{2}, ..., O_{n})$$

$$= (O_{1}, O_{2}, ..., O_{n}) + (A_{1}, A_{2}, ..., A_{n})$$

$$= (A_{1}, A_{2}, ..., A_{n})$$
(8)

Also well as worth and below Propositions.

Proposition 4.2: Additions of n-vertexes is **commutative** in $\mathcal{N}^{\mathcal{D}.Aff}$:

$$\forall (A_{1}, A_{2}, ..., A_{n}), (B_{1}, B_{2}, ..., B_{n}) \in \mathcal{N}_{\approx}^{\mathcal{D}.Aff}$$

$$(A_{1}, A_{2}, ..., A_{n}) + (B_{1}, B_{2}, ..., B_{n})$$

$$= (B_{1}, B_{2}, ..., B_{n}) + (A_{1}, A_{2}, ..., A_{n})$$
(9)

Proposition 4.3: Addition of n-vertexes is associative in $\mathcal{N}^{\mathcal{D}.Aff}$:

$$\forall (A_{1}, A_{2}, ..., A_{n}), (B_{1}, B_{2}, ..., B_{n}), (C_{1}, C_{2}, ..., C_{n}) \in \mathcal{N}_{\approx}^{\mathcal{D}.Aff}$$

$$(A_{1}, A_{2}, ..., A_{n}) + [(B_{1}, B_{2}, ..., B_{n}) + (C_{1}, C_{2}, ..., C_{n})] =$$

$$= [(A_{1}, A_{2}, ..., A_{n}) + (B_{1}, B_{2}, ..., B_{n})] + (C_{1}, C_{2}, ..., C_{n}).$$
(10)

Proposition 4.4: For every n-vertex in $\mathcal{N}_{\approx}^{\mathcal{D}.Aff}$ exists her right symmetrical according to addition:

$$\forall (A_1, A_2, ..., A_n) \in \mathcal{N}_z^{\mathcal{D}.Aff}, \exists \overline{(A_1, A_2, ..., A_n)} \in \mathcal{N}_z^{\mathcal{D}.Aff}$$

$$(A_1, A_2, ..., A_n) + \overline{(A_1, A_2, ..., A_n)} = (O_1, O_2, ..., O_n) \quad (11)$$

(Here have that
$$\overline{(A_1,A_2,...,A_n)} = (\overline{A_1},\overline{A_2},...,\overline{A_n})$$
)

By Theorem 4.1, Propositions 4.1, 4.2, 4.3 and 4.4 we have this true theorem:

Theorem 4.2: The Groupoid $\left(\mathcal{N}_{\approx}^{\mathcal{D}.Aff},+\right)$ is commutative (Abelian) Group.

References

- [1] Dr. Orgest ZAKA, Prof. Dr. Kristaq FILIPI, (2017) An Application of Finite Affine Plane of Order n, in an Experiment Planning,"International Journal of Science and Research (IJSR), http://www.ijsrpublications.com/ijsr.net/archive/v6i6/v6i6.php, Volume 6 Issue 6, June 2017, 1744 1747, DOI: 10.21275/ART20174592
- [2] Zaka, O., Flipi, K. (2016). One construction of an affine plane over a corps. Journal of Advances in Mathematics, Council for Innovative Research. Volume 12 Number 5. 6200-6206.

- [3] Zaka, O., Filipi, K. (2016). "The transform of a line of Desargues affine plane in an additive group of its points", *International Journal of Current Research*, 8, (07), 34983-34990.
- [4] FRANCIS BORCEUX (2014). An Axiomatic Approach to Geometry&An Algebraic Approach to Geometry (Geometric Trilogy 1& Geometric Trilogy II). Springer International Publishing Switzerland.
- [5] GRRILLET, P. A (2007). Abstract Algebra(Second Edition). Graduate Texts in Mathematics v242. ISBN-13: 978-0-387-71567-4Springer Science + Business Media, LLC (Grrillet, P. A, et al, 2007).
- [6] HILBERT. D, VOSSEN. S. C (1990). Geometry And The Imagination. Chelsea Publishing Company.
- [7] Buenkenhout, F, (Editors)(1995). HANDBOOK OF INCIDENCE GEOMETRY. Elsevier Science B. V. ISBN: 0 444 88355 X.
- [8] Hungerford, TH. W (1974). Algebra (Graduate Text in Mathematics vol 73). Springer-Verlag New York, Inc. ISBN 0-387-90518-9.
- [9] Lang, S (2002). Abstract Algebra (Third Edition). Springerverlag new york, inc. ISBN 0-387-95385-X.
- [10] Ueberberg, Johannes (2011), Foundations of Incidence Geometry, Springer Monographs in Mathematics, Springer, doi:10.1007/978-3-642-20972-7, ISBN 978-3-642-26960-8.