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Abstract: The paper has presented and discussed a single generalized algebraic formulation for magneto-hydrodynamic 

(MHD) flow over an isothermal exponentially stretching sheet under an exponential magnetic field over a range of a magnetic 

parameter (M), 0 ≤ M ≤ 1.0  and has analyzed relative weights of different terms in the governing equation. Solution 

methodology is based on minimization of the residual of the governing equation and results are in perfect agreement with other 

previously published works. Wall shear stress has been formulated as single algebraic equation of M. Inside flow region, shear 

stress is maximum at the wall and suffers an exponential decrease in vicinity of sheet at similarity variable (η), η ≤ 4.0., where 

1
st
 and 3

rd
 terms in the governing equation are the most dominant terms. Within the vicinity of the sheet, the velocity has 

suffered an exponential decrease that became steeper with the increase of M, signifying a retardation effect of the magnetic 

field. Beyond η = 4.0 the flow region is almost stagnant. The analysis shows that high nonlinearity of the governing equation 

has led to an oscillatory nature especially in the vicinity of the sheet, which becomes more damped at higher values of M. In 

the range 0 ≤ η ≤ 0.25, the 2nd nonlinear term in the equation can be neglected, while in the range 0.25 ≤ η ≤ 0.75, the 4th 

term can be neglected. In the range, 0.75 ≤ η ≤ 1.0 both the 3rd and 4th terms of the equation can be neglected. Although 

neglecting any term of the governing equation will be at the sacrifice of the accuracy of the solution, yet the 2nd term, which is 

nonlinear, can be totally deleted from the equation at a sacrifice of about 10% of the accuracy of the solution. 
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1. Introduction 

The boundary layer flow of viscous fluids over flat 

stretching surfaces have been previously investigated for its 

important applications in both technological processes (such 

as: hot rolling, wire drawing, metal spinning, metal and 

polymer extrusion, manufacturing of plastic films and glass-

fibers, … etc.) and processes encountering flow of 

electrically conducting fluids (such as: magneto-

hydrodynamic (MHD) flows, fusing of metals in electrical 

furnaces under magnetic fields, cooling of walls inside 

nuclear reactor containment vessels,... etc.). Sakiadis [1], in 

his pioneer study of axisymmetric two-dimensional (2-D) 

boundary layer flow over a stretched surface moving with a 

constant velocity, had developed the boundary layer 

equations. Extension of his study by Erickson et al. [2] had 

included effects of the addition of suction and injection. 

Crane [3] had obtained the analytical solution for a boundary 

layer flow of an incompressible viscous fluid over a 

stretching sheet. Further extensions had considered the 

effects of porous surfaces, MHD fluids, slip effects, … etc. 

Both Magyari and Keller [4] and Elbashbeshy [5] had 

examined the flow and heat transfer characteristics over an 

exponentially stretching permeable surface. Mukhopadhyay 

[6] has examined slip effects on MHD boundary layer flow 

over an exponentially stretching sheet. In an attempt to 

control momentum, Kumaran et al. [7] had shown that the 

magnetic field had made the streamlines steeper resulting in 

thinner velocity boundary layer. 

Following these studies, several extensional studies had 
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investigated the problem of boundary layer flow of viscous 

fluids over flat stretching surfaces and obtained closed form 

solutions (see [8–10]). A detailed literature survey for the 

flow past a stretching sheet can be seen in a paper by Liao 

[11]. Mabood et al. [12] have conducted and discussed an 

analytical Homotopy analytical method (HAM) solution of 

MHD boundary layer flow over an exponentially stretching 

sheet in the presence of radiation based on suitable 

transformations techniques previously used by others (e.g.: 

Liao, [13], Abbasbandy, [14], Sajid and Hayat, [15], Rashidi 

et al., [16] and Rashidi et al., [17]). In those studies, the 

convergence of the series solution and the effects of 

controlling parameters on MHD flow and heat transfer 

characteristics have been presented and discussed. 

Tamizharasi and Kumaran [18] dealt with the pressure in a 

steady 2-D/axisymmetric MHD/Brinkman flow of an 

incompressible viscous electrically conducting fluid over a 

flat stretching sheet. They found that the pressure distribution 

for the MHD case was finite, while this distribution was 

totally different in the outer boundary layer for the 2-D and 

the axisymmetric cases. Kumaran and Tamizharasi et al. [19] 

developed an approximate analytical solution of the 

axisymmetric flow of an incompressible viscous electrically 

conducting fluid over a flat stretching sheet. In their paper, 

the pressure distribution of the MHD and the porous medium 

cases are plotted and compared. The MHD flow past a 

stretching surface of a viscoelastic second grade fluid is 

studied by Sahoo [20] subject to various physical conditions. 

The magneto-hydrodynamic flow over a stretching sheet was 

further studied by Kumaran et al. [21]. The flow along a 

stretching permeable surface in Darcy–Brinkman porous 

medium has been investigated by Pantokratoras [22]. 

Sajid et al. [23] studied the case where the fluid flow was 

induced by the motion of the surface therefore, the flow 

behavior was analyzed under the influence of both the 

motion of the solid surface and buoyancy induced by heating 

and cooling of the stretching sheet. Recently, Hsiao [24] 

numerically studied the heat transfer, mass transfer, and 

mixed convection for MHD flow of a viscoelastic fluid past a 

continuously moving surface with Ohmic dissipation. 

Recently, Abbas et al. [25] investigated the mixed convection 

in the stagnation-point flow of a Maxwell fluid toward a 

vertical stretching sheet and discussed the results both 

analytically using the HAM method and numerically using 

finite difference method. Sajid et al. [26] studied the steady 

mixed convection stagnation point flow of an incompressible 

Oldroyd-B fluid over the stretching sheet in the presence of a 

constant applied magnetic field under linear temperature 

variation of the surface. By the use of similarity 

transformations, they used the finite difference scheme to 

numerically solve the resulting coupled non-linear 

differential equations for velocity, temperature, skin friction 

coefficient and rate of heat transfer through the wall. 

The case of the unsteady boundary layer flow of viscous 

fluids over flat stretching surfaces has also been under 

numerous investigations. Tiegang et al. [27] had proposed 

and studied a new family of unsteady boundary layers over a 

constant speed stretching flat surface from a slot moving at a 

certain speed. They showed that, under specific conditions, 

the solutions only have existed for a certain range of the slot 

moving parameter and have reduced to the unsteady Rayleigh 

problem and the steady Sakiadis stretching sheet problem. 

Kumaran et al. [28] studied the MHD flow past a stretching 

permeable sheet and obtained an exact solution for the 

boundary layer flow of an electrically conducting fluid past a 

quadratically stretching, and linearly permeable sheet. They 

graphically showed and discussed the effects of magnetic, 

suction/injection and linear/nonlinear stretching parameters 

on the stream function and the skin friction. Gowdara and 

Bijjanal [29] performed an investigation for the structure of 

an unsteady boundary layer flow and heat transfer of a dusty 

fluid over an exponentially stretching sheet subject to suction 

under the effects of thermal radiation, viscous dissipation, 

and internal heat generation/absorption. They numerically 

solved the resulting nonlinear ordinary differential equations 

by Runge–Kutta–Fehlberg method and presented the effects 

of the pertinent physical and engineering parameters in 

graphical and tabular forms. 

Although the above-mentioned literature studies have 

extensively handled too many aspects of the problem of 

boundary layer flow over a stretching sheet under magnetic 

effects, yet, none of these studies had attempted to consider a 

generalized formulation relating the flow parameters so that 

any future usage can benefit without the task of resolving the 

flow problem. Also, with the existence of 2 nonlinear terms 

in the governing equation, previous studies showed no 

attempt to assess the relative importance of the composing 

terms of the controlling differential equation that can 

certainly help in any linearization process to be proposed for 

the sake of simpler solutions. 

The present paper investigates the MHD flow over an 

isothermal exponentially stretching sheet under an 

exponential magnetic field to fulfill the following two main 

objectives: (i) to present and discuss a generalized algebraic 

formulation for the flow parameters as a function of the 

controlling parameters; and (ii) present and discuss the 

relative weights of the different terms involved in the 

nonlinear initial-boundary value governing differential 

equation controlling the flow process. 

2. Problem Formulation and Analysis 

Consider a quiescent region of incompressible, viscous, 

electrically conducting fluid set in a steady, 2-D flow by a 

horizontal sheet stretching horizontally with a velocity 

�
���  and is subjected to a variable magnetic field ���� 
applied normally to the sheet under no external electric field. 

The induced magnetic field is assumed negligible, which can 

be justified for MHD flow at small magnetic Reynolds 

number (e.g.: Ishak [30]). The electric field due to the 

polarization of charges is assumed negligible. Under 

boundary layer approximations, the flow is governed by the 

following continuity and momentum equations: 
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��
�� + ��

�� = 0	                           (1) 

�	 ���� + � ��
�� = � ������ − ������

 �	             (2) 

where �  and 	!  are the horizontal and vertical directions, � 

and � are the � and ! velocity components respectively, � is 

the kinematic viscosity, "  is the fluid density and #  is the 

electrical conductivity. These fluid properties are assumed 

constant. The hydrodynamic boundary conditions are: (e.g.: 

Ishak [30]): 

� = �
���, � = 0	%&	! = 0                        (3) 

� → 0	%(	! → ∞                                 (4) 

The velocity of the stretching sheet �
��� is assumed to 

vary exponentially in the form: 

�
��� = �*+,-	                                  (5) 

where �*  is a reference velocity and .  is a characteristic 

length. It is also assumed that the magnetic field ���� varies 

exponentially by the relation: 

���� = �*+ ,
�-	                                 (6) 

where �* is a constant magnetic field. This magnetic field is 

represented in dimensionless form by a magnetic parameter 

/ given as: 

/ = 0��1�2
 31 	                                (7) 

The continuity Eq. (1) is satisfied by introducing a stream 

function 4 such that: 

� = �5
��  and � = − �5

��                          (8) 

To put the momentum and boundary conditions in 

dimensionless form, the following transformations are 

introduced (e.g.: [15]): 

6 = !7 31
082 +

,
�-	                                  (9) 

� = �*+,-9′�6� and � = −7831
02 +

,
�-;9�6� + 69<�6�=	  (10) 

where 6 is the similarity variable, 9�6� is the dimensionless 

stream function and the prime denotes differentiation with 

respect to 6 . Using the above relations and the magnetic 

parameter, the momentum equation, and the boundary 

conditions reduce to: 

9<<< + 99<< − 29<0 −/9< = 0               (11) 

9�0� = 0, 9<�0� = 1, 9<�∞� = 0	                (12) 

Although the above differential equation is an initial-

boundary value ordinary differential equation, yet it is highly 

nonlinear due its 2
nd

 and 3
rd

 terms. Numerous literature 

researches reported the use of the HAM method to reach an 

analytical stable solution (e.g.: [12, 14 and 17]). They also 

reported that reaching a convergent solution has required 

higher order iterations of this method. Although usage of 

Galerkin Weighted Residual Method (WRM) and the Least 

Squares Weighted Residual method were successful in 

solving channel flow of magnetic fluid through porous sheet 

(e.g.: [31] and [32]), yet authors’ numerous attempts to solve 

present flow problem using these two methods, with even 

higher orders, have resulted in unstable oscillating solutions, 

which are far from being realistic. Also, attempts to solve this 

equation by iteration in the form: 9>?@<<< = −9>9><< +
29><0 +/9>< has failed for the same reason of the oscillatory 

nature of the results. Present solution has used the direct 

minimization of the differential equation, which can be 

summarized below. 

The exact solution of the differential equation is assumed 

to be of the form: 

9�6� = ∑ ∑ %BCDCE*DBE* 6B+FCG 	              (13) 

Which, mathematically speaking, is a complete infinite set 

of independent functions that ultimately converge to the 

exact solution. The values of the coefficients %BC  will be 

specific to the value of /  used in the solution. The 

application of the initial and boundary conditions of Eq. (12) 

to this assumed solution results in 3 relations that can be used 

to cancel two of the unknown coefficients in the above 

equation. The above equation when substituted in Eq. (12)) 

will result in equality, while the use of a truncated form as: 

9HI�>�6� = ∑ ∑ %BCCJK�
CE*BJK�BE* 6B+FCG            (14) 

will result in a residual error as: 

L+(MN = 9<<<HI�>�6� + 9HI�>�6� ∗ 9<<HI�>�6� −29<0HI�>�6� − /9<HI�>�6�                     (15) 

For any specific assumed value for /, minimization of the 

absolute value of the above residual will result in values of 

the unknown coefficients of the assumed solution that are 

valid only for this specific used value of /. That solution 

will be acceptable if (i) it satisfies the initial and boundary 

conditions; (ii) it gives a minimized absolute value for the 

residual in Eq. (15) within the required error tolerance and 

(iii) it agrees well with any other published solutions of this 

equation under similar conditions. Below is a presentation 

and discussion of using the above methodology to solve this 

flow problem. 

With several presumed values of /  in the range 0.0 ≤
/ ≤ 1.0, present trials utilizing only 2 terms (i.e.: MP%� =
2	and QP%� = 2) as a solution to Eq. (11), have produced 

very rough acceptable results that fairly agree in the general 

trends with other recent published data with same values of 

/  (e.g.: Mabood et al. [12]), but poorly agree with their 

graphically presented numerical values of their solution. 

However, the use of series terms having MP%� = 2	  and 

QP%� = 3  gives fairly well acceptable results in both the 

general trends and the numerical values as compared with 

other published results [12]. Although the use of more series 
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terms beyond the above-mentioned will only result in a 

smaller residual value of the governing differential equation; 

Eq. (11), which is good, yet it complicates the resulting 

solution, as well as the resulting enhancements of the 

solution will be negligible. Applying the initial and boundary 

conditions given in Eq. (12), to the proposed solution gives: 

9HI�>�6� = %** + %*@eFG + %*0eF0G − �%** + %*@ + %*0�eFTG +%@@6eFG + %@06eF0G 	+ �1 � 3%** � 2%*@ � %*0 � %@@ �
%@0�6eFTG � %0@60eFG � %0060eF0G � %0T60eFTG         (16) 

Values of the above 8 unknown coefficients; (namely: 

%**, %*@, %*0, %@@, %@0, %0@, %00	and %0T  ) depend on value of 

M. 

As mentioned before, all previously published results of 

this flow problem show specific values of solutions in 

graphical form or tabulated form at specific values of / and 

none of those results have shown any generalized 

formulation of the solution that can cover certain ranges of 

variation of M . As discussed below, present work gives 

generalized formulation of the solution that covers the most 

practically important range of /  (i.e.: 0.0 � / � 1.0 ). 

Generalized relationship relating 9HI�>�6� to the value of / 

is assumed as a 3rd order polynomial in / in the form: 

9HI�>�6� � a000 � a001	/ � a002	/0 � a003	/T �
+FG�a010 � a011	/ � a012	/0 � a013	/T� �
+F0G�a020 � a021	/ � a022	/0 � a023	/T� �

+FTG�a000 � a010 � a020 � a001	/ � a011	/ �
a021	/ � a002	/0 � a012	/0 � a022	/0 � a003	/T �

a013	/T � a023	/T� � +FG�a110 � a111	/ � a112	/0 �
a113	/T�6 � +F0G�a120 � a121	/ � a122	/0 �

a123	/T�6 � +FTGV1 � a010 � a110 � a120 � a011	/ �
a111	/ � a121	/ � a012	/0 � a112	/0 � a122	/0 �

a013	/T � a113	/T � a123	/T � 2�a020 � a021	/ �
a022	/0 � a023	/T� � 3�a000 � a010 � a020 �

a001	/ � a011	/ � a021	/ � a002	/0 � a012	/0 �
a022	/0 � a003	/T � a013	/T � a023	/T�W6 �
+FG�a210 � a211	/ � a212	/0 � a213	/T�60 �
+F0G�a220 � a221	/ � a222	/0 � a223	/T�60 �

+FTG�a230 � a231	/ � a232	/0 � a233	/T�60  (17) 

The application of the above methodology to specific 

values of M  in the range 0.0 � / � 1.0  gives numerical 

values for the unknown coefficients shown in Eq. (16). To 

fulfill the first objective of this study, the resulting values of 

these coefficients, are fitted to each corresponding value of 

M, for the sake of evaluation of the values of the constants 

shown in Eq. (17), and hence to have the generalized flow 

equation. To fulfill the second objective of the present study, 

the resulted fitted equations are to be used to assess the 

relative weight of each term in the differential Eq. (15). This 

can be of great help for any future proposed simplification or 

linearization of this equation. 

3. Results and Discussion 

Results of applying the above methodology using 

numerous / values in the range 0.0 � / � 1.0 to minimize 

the absolute value of the residual, given by Eq. (15), summed 

over 2000 complete calculated sets, using 	X6 �
0.1	6	and	X/ � 1 � 4/, is as follows: 

/M[MP�P\ ] Abs;L+(MNa**
bGE*

c

bdE@
= � 1.60768049275	  (18) 

Values of the coefficients in Eq. (16) are given in Table (1). 

Table 1. Coefficients of Eq. (16) as functions in / for the case 0.0 � / � 1.0. 

 	hi 	hj 	hk 	hl 

a** 0.79125190130 -0.08674189435 0.00406712781 -0.05335645174 

a*@ -0.42752690460 0.33666056921 -0.09802532963 0.03680960142 

a*0 -0.17038833700 -0.18995396189 -0.17609631063 0.24492386583 

a@@ -0.23401574285 0.06531846478 0.32726038076 0.06630493486 

a@0 0.19675141374 -0.33074000076 0.02005686463 -0.08753499807 

a0@ 0.17845164512 -0.15745452953 -0.20994512872 0.13071959156 

a00 -0.04574033513 -0.04309754827 -0.10455684738 -0.18175787932 

a0T -0.12503863343 0.03476059461 -0.09411570718 0.05584199724 

 

The dimensionless generalized relationship of the wall 

shear stress (i.e.: skin friction) 9′′HI�>�6 � 0� is given by: 

9′′HI�>�0� � �1.28644363445 � 0.35577784303/ �
0.00032640690/0 � 0.01171136818/T (19) 

3.1. Comparison with Recently Published Results 

Plotting of present generalized relationship of the shear 

stress given in Eq. (19) and that of Mabood et al. [12], as 

directly taken from their study, are shown in Fig. 1(a), (b). 

The figure shows a perfect agreement both in trend as well as 

in values between these two results over the shown range of 

/ . This signifies that, although present methodology of 

solving the flow problem is both simple and covers a range 

of /  values, yet it agrees well with results of the more 

elaborated analytical HAM method (e.g.: [12]) that calculates 

flow function case be case. 

 

Fig. 1. Wall shear stress as dependent on magnetic parameter. (a) from Eq. 

(19) of present study and (b) as Fig. (9) in Ref. [12]. 
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Present values of dimensionless flow function 9HI�>�6� 
and dimensionless velocity 9′HI�>�6� are shown in Fig. (2(a)) 

for values of � 0.0, 0.25, 0.5, 0.75	%[N	1.0. The behavior of 

these groups of curves agrees well with previously published 

results shown in Fig. (2(b)) for the flow velocity. In both 

studies, the figure shows that beyond the value of η � 4.0 the 

flow region is almost stagnant as a result of the decreased 

effects of the stretching sheet on the motion of the fluid. 

Within the vicinity of the sheet, in the range 0.0 � η � 4.0, 

the velocity suffers an exponentially sharp decrease at all 

values of M, which is a true reflection of the solution in Eq. 

(17). Both parts of the figure also show that higher values of 

M result in the steeper decrease of the velocity distribution, a 

condition which is in agreement with work of Kumaran et al. 

[7]. This signifies the retardation effect of the magnetic field 

on the flow even in the vicinity of the stretching sheet. 

 

Fig. 2. Dimensionless flow function 9HI�>	�6�  and velocity 9HI�>< 	�6� . (a) 

present study at M = 0.0, 0.25, 0.5, 0.75, 1.0, (b) as Fig. (6) in Ref. [12] at 
M = 0.0, 0.5, 1.0. 

3.2. Errors Analysis 

The errors encountered in the present study for the 

governing differential Eq. (15) are shown in Fig. (3) for 

values of / �  0.0, 0.25, 0.5, 0.75 and 1.0. The high 

nonlinearity of the governing Eq. (15) has led to the 

oscillatory nature of the shown error, a condition that has 

been shown in previous studies of this kind of flow. Also, the 

shown errors for given values of /  exhibit almost same 

value for 0.0 � 6 � 0.5, a condition that can be explained as 

the strong effect of the stretching sheet near its vicinity. Due 

to the weak effect of the sheet in the region, 6 m 8.0, this 

error vanishes at all values of / , signifying that the 

nonlinearity effects in the governing differential are 

insignificant and the fluid is almost stagnant in that region. 

An important conclusion can be withdrawn from this figure 

that increasing the magnetic field, (i.e.: at higher values of 

/ ), results in more damping of the oscillatory of the 

behavior of the governing equation. One might argue that the 

present solution method might be the cause of this 

oscillation. In fact, this oscillatory nature has been shown in 

other previously published works that had utilized more 

elaborate other solution methods (e.g. HAM by [12]). Also, 

present authors’ attempts to use discontinuous Galerkin 

method or Least Square WRM to solve this specific flow 

problem have failed due to the very rough oscillations of both 

the solution and the residual errors. 

 

Fig. 3. Errors encountered in present study for M = 0.0, 0.25, 0.5, 0.75 and 1.0. 

3.3. Shear Stress Inside Flow Region 

Figure (4) shows the shear stress inside the flow region for 

values of / � 0.0, 0.25, 0.5, 0.75 and 1.0. At the wall, where 

η � 0, the shear stress is included as an inset in the figure, 

which is the same as shown in Fig. (1) above at respective 

values of / . The flow region can be considered to be 

composed of two regions; in the vicinity to the sheet where 

6 � 4.0; and away from the sheet. At all values of /, the 

shear stress has its maximum value on the wall, then suffers 

an almost same exponential decrease inside the first region, 

and almost vanishes in the second region. 

 

Fig. 4. Shear stress inside flow region. 

3.4. Relative Weights of the 4 Terms of Eq. (15). 

Figure (5) shows the relative terms of the governing 

differential Eq. (15) at 5 values of /. All 4 terms at all / 

values exhibit one common behavior; which is the reduction 

to a null value away from the stretching sheet beyond about 

η m 4.0 , which signifies that the fluid is stagnant in that 

region. Within the vicinity of the sheet, the most dominant 

terms are the first and third terms, although they almost 

cancel each other. The effect of M , given in the 4
th

 term, 

shows a noticeably increased damping in the flow with the 

increase of M. The 2
nd

 term is affected little away from the 

sheet, i.e. in the range 0.5 � η � 4.0. This figure also shows 

that the 2
nd

 term, which is a nonlinear one, can be totally 

deleted from the governing Eq.(15) for a sacrifice of about 

10% of the accuracy of the solution of that equation. 
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Fig. 5. Relative weights of the 4 terms of governing differential Eq. (15) at 

values of M = 0.0, 0.25, 0.5, 0.75 and 1.0. 

 

Fig. 6. Error values of governing differential Eq. (15) and errors in its terms 

at values of M = 0.0, 0.25, 0.5, 0.75 and 1.0. 

Figure (6) shows the relative errors of the 4 terms of the 

governing Eq. (15) with regards to the residual error in the 

whole equation at 5 different values of /. With the scales shown 

in the figure, the residual in the whole equation for all values of 

/ can be considered an almost zero (shown as a horizontal line 

with a value = 0), which proves the good credibility of the 

solution method in present study. However, the nonlinearity of 

the equation is manifested by the different behaviors of the four 

terms of the equation at different values of /  and 6.  As 

mentioned before, away from the sheet, (i.e. where range 

6 m 4.0), the flow is almost stagnant, which is exhibited by the 

null values of all errors of the 4 terms of the equation. Near 

vicinity of the sheet, the 2
nd

 nonlinear term in the equation (i.e.: 

9HI�>�6� ∗ 9′′HI�>�6�� can be neglected in the range 0 � 6 �

0.25, while in the range 0.25 � 6 � 0.75, the 4
th
 term (i.e.: 

�/9<HI�>�6�, which include /, can be neglected. In the range, 

0.75 � 6 � 1.0 both the 3
rd
 and 4

th
 terms of the equation can be 

neglected. It is worthy to mention that neglecting any term of the 

governing Eq. (15) will be at the sacrifice of the accuracy of the 

solution of the whole equation. 

4. Conclusions 

The paper has presented and discussed a generalized 

algebraic formulation for MHD flow over an isothermal 

exponentially stretching sheet under an exponential magnetic 

field in the range of a magnetic parameter (M), 0.0 � M �
1.0 and has analyzed relative weights of different terms in 

the governing flow equation. Solution methodology was 

mainly based on the minimization of the residual of the 

differential equation. Dimensionless wall shear stress has 

been algebraically formulated as dependent on M. The shear 

stress, the flow function and velocity distribution are in 

perfect agreement with other previously published works. 

Beyond the value of similarity variable (η), η � 4.0 the flow 

region is almost stagnant due to the decreased effects of both 

the stretching sheet and the magnetic field on the fluid. 

Within the vicinity of the sheet, the velocity has suffered an 

exponential decrease which became steeper with the increase 

of M, signifying retardation effect of the magnetic field. 

The analysis shows that high nonlinearity of the governing 

equation has led to an oscillatory nature especially in vicinity 

of the sheet, which becomes more damped at higher values of 

M. At all values of M, the shear stress has its greatest value 

on the wall, then suffers an exponential decrease in vicinity 

of the sheet at η � 4.0., where the most dominant terms in 

the governing equation are the first and third terms. In the 

range 0 � η � 0.25, the 2
nd

 nonlinear term in the equation 

(i.e.: fopqr�η� ∗ f′′opqr�η��  can be neglected, while in the 

range 0.25 � η � 0.75, the 4
th

 term (i.e.: �Mf <opqr�η�, can 

be neglected. In the range, 0.75 � η � 1.0 both the 3
rd

 and 

4
th

 terms of the equation can be neglected. Although it is 

worthy to mention that neglecting any term of the governing 

equation will be at the sacrifice of the accuracy of the 

solution, yet the 2
nd

 term, which is a nonlinear one, can be 

totally deleted from the equation for a sacrifice of about 10% 

of the accuracy of the solution. 

Nomenclature 

% coefficient
 �, ! horizontal and vertical directions 

�* constant magnetic field
 �, �, �, ! velocity components 

���� variable magnetic field �* reference velocity 

2-D two dimensional �
��� sheet stretching velocity 

9�6� dimensionless stream function WRM Weighted residual method 

HAM Homotopy analytical method Greek letters 

M, Q, [ recursive indices 6 similarity variable 
. characteristic length � fluid kinematic viscosity

 

/ magnetic parameter " fluid density 
MHD Magneto-Hydrodynamic # fluid electrical conductivity 

L+(MN residual error 4 stream function 

&s�[ truncated X6, X/ recursive indices 
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