
 

Mathematical Modelling and Applications 
2017; 2(2): 21-27 

http://www.sciencepublishinggroup.com/j/mma 

doi: 10.11648/j.mma.20170202.12  
 

Solving Definite Quadratic Bi-Objective Programming 
Problems by KKT Conditions 

Amanu Gashaw
1
, Getinet Alemayehu

2
 

1Department of Mathematics, College of Natural Science, Arba Minch University, Arba Minch, Ethiopia 
2Department of Mathematics, College of Natural Science, Haramaya University, Haramaya, Ethiopia 

Email address: 

amanugashaw19@gmail.com (A. Gashaw), getalem2014@gmail.com (G. Alemayehu) 

To cite this article: 
Amanu Gashaw, Getinet Alemayehu. Solving Definite Quadratic Bi-Objective Programming Problems by KKT Conditions. Mathematical 

Modelling and Applications. Vol. 2, No. 2, 2017, pp. 21-27. doi: 10.11648/j.mma.20170202.12 

Received: June 27, 2016; Accepted: July 11, 2016; Published: April 25, 2017 

 

Abstract: A bi-objective programming has been proposed for dealing with decision process involving two decision makers. 

In this paper, a bi-objective programming problem in which both objective functions are definite quadratic is considered. The 

feasible region is assumed to be a convex polyhedron. Solution methods namely; using KKT Conditions is developed. 

Illustrative examples for the method are presented and theorems and facts to support the method are also discussed. The 

solution of the examples are obtained using a LINGO (15.0) mathematical software. 
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1. Introduction 

1.1. Background of the Study 

A general optimization problem is to select n decision 

variables ��, ��, … , �� from a feasible region in such a way as 

to optimize (minimize or maximize) the objective function �(��, ��, … , ��)  of the decision variable. The problem is 

called a non-linear programming problem (NLP) if the 

objective function is non-linear and/or the feasible region is 

determined by non-linear constraints. 

Interest in non-linear programming has grown 

simultaneously with the growth of linear programming. Kuhn 

and Tucker developed a necessary and sufficient condition 

for the existence of an optimal solution to a non-linear 

programming problem, which is a basis for further 

development in the field. 

A simple subclass of non-linear programming problem is a 

one in which the objective function is non-linear but the 

constraints are all linear. This gives rise to a variety of 

problems depending up on the nature of the objective 

function. 

When the objective function is given by 	� = 
 + �� +������ , the problem is called a quadratic programming 

problem. 

Given linear constraints, optimal solution of a general non-

linear programming problem may not always exist at an 

extreme point. In fact, a study of the nature of the objective 

function is necessary to predict this. 

A numerical function � defined on a convex set � ⊂ �� is 

said to be convex if for each ��, � ∈ � and � ∈ [0,1] such that 	�(�� + (1 − �)�� ≤ �(�) + (1 − �)�(��). 
A numerical function � defined on a set � ⊂ �� is concave 

on S if and only if the function −� is convex in on S. 

A numerical function � is said to have a local or relative 

maximum at �� ∈ � if ∃ > 0 such that � is defined for all 

points of ‖� − ��‖ <  	$%
	�(�) ≤ �(��) for all points.	� is 

said to have a global maximum at �� ∈ �  if for all � ∈�, �(�) ≤ �(��). 
Algorithms for solving a general mathematical 

programming problem approach systematically to a local 

optimal solution. Under appropriate assumptions, a local 

optima can be shown to be a global optima. For instance, 

when the constraint set is a convex polyhedron and the 

objective function is convex (concave), the local minimum 

(maximum) is also a global minimum (maximum) [5]. 

Single objective decision making method reflect an earlier 

and simpler era. The world has become more complex as one 

enters the information age. One can find that almost every 

important real world problem involves more than one 

objective. Since the goals or objectives might be conflicting 

with each other, no single optimal solution can be found and 

the optimization problem becomes finding the best 

compromise solutions [5]. 
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The general Multi-Objective Programming problem [9] is 

defined as &$�	�� = ��(�)	&$�	�� = ��(�)	.	.	.	&$�	�( = �((�)	)*+,-./	/0	� ∈ �                                (1) 

A bi-objective problem formulated as follows: ��(�)1	234                                      (2) ��(�)1234  )*+,-./	/0	�	 ∈ 	� 

where ��  and ��  are the first and the second objective 

functions respectively and	� is constraint set. 

Quadratic Programming Problem 

A quadratic program (QP) is an optimization problem 

wherein one either minimizes or maximizes a quadratic 

objective function of a finite number of decision variable 

subject to a finite number of linear inequality and/or equality 

constraints. A quadratic function of a finite number of 

variables � = (��, ��, … , ��)�  is any function of the form 

�(�) = 5 + ∑ .7�78� �7 + ��∑ ∑ 9(7�78��(8� �(�7    (3) 

Using matrix notation, this expression simplifies to 

�(�) = 5 + ��� + ������                      (4) 

where � = :.�.�⋮.�< and � = :9�� 9�� ⋯ 9��9�� 9�� ⋯ 9��⋮9�� ⋮9�� ⋱⋯ ⋮9��< 

without loss of generality, assume that � is symmetric matrix 

since 

���� = (����)� = ����� = �� (���� + �����) =�� ?@A@B� C �, 

and so it is free to replace the matrix � by the symmetric 

matrix 	@A@B� . Henceforth, the matrix � is symmetric. 

The general quadratic programming problem can be 

written as 

(�D): &$�E&EF-	�(�) = ��� + ������           (5) 

)*+,-./	/0	G� ?	≤≥	C I	$%
	� ≥ 0 

If constant term exists, it is dropped from the model since 

it plies no role in the optimization step. The decision 

variables are denoted by the n-dimensional column vector �, 

and the constraints are defined by an (&�%) matrix G	and 

an	&-dimensional column vector I of right hand side. 

1.2. Statement of the Problem 

Different researchers used different methods for solving 

BOQP problems, but the method that they used is so lengthy 

and in addition to this, most of them use linearization 

technique, this creates an approximation error. So, the 

researcher was trying to answered the question that; can we 

solve definite quadratic bi-objective programming problem 

by KKT condition easily. 

1.3. Significance of the Study 

This study will give a direction towards definite quadratic 

bi-objective programming problems to anybody or any 

organization to solve their real life problems (or whatever 

any problem) which are modeled as definite quadratic bi-

objective programming with constraint region determined by 

linear constraints. 

1.4. Objective of the Study 

The general objective of this study is to solve the definite 

BOQP problem with constraint region determined by linear 

constraints by KKT conditions. 

The study is intended to explore the following specific 

objectives 

a) To discuss definite quadratic bi-objective programming 

problem; 

b) To discuss KKT conditions, and to solve the definite 

BOQP. 

2. Research Methodology 

This research work involve in collecting the information 

about solving definite quadratic bi-objective programming 

problem in which KKT conditions focused, from 

optimization books, optimization journals, and searching 

other materials and references from the internet. The 

collected material and the techniques or methods used by 

authors in relation to KKT conditions are examined. 

a) Important theorems and facts to support the methods are 

discussed. 

b) The definite quadratic bi-objective programming 

problem is changed into single programming problem 

by using KKT conditions. Then after changing in to 

single programming problem LINGO (15.0) was 

applying to solve the problem. 

3. Definite Quadratic Bi-Objective 

Programming Problem 

A quadratic program 
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&$�E&EF-	�(�) = �� + 12���� 

�*+,-./	/0	G� ≤ I	$%
	� ≥ 0 where Q is symmetric is 

said to be definite quadratic if ����  satisfies one of the 

following concepts	
i. positive definite if ���� > 0 for all � ≠ 0, 

ii. positive semi definite if ���� ≥ 0 for all �, 

iii. negative definite if ���� < 0 for all � ≠ 0, 

iv. negative semi definite if ���� ≤ 0 for all �. 

However, it is difficult to determine the value of � easily, 

so we use the following concepts: 

Let	� = :9�� 9�� ⋯ 9��9�� 9�� ⋯ 9��⋮9�� ⋮9�� ⋱⋯ ⋮9��<, the % determinants 

L� = |9��|, L� = N9�� 9��9�� 9��N , … , L� =
O9�� 9�� ⋯ 9��9�� 9�� ⋯ 9��⋮9�� ⋮9�� ⋱⋯ ⋮9��O are called the leading principal minors 

of a matrix	�. 

Instead of the above four concepts, we can use the 

following criteria to determine the definiteness of the 

quadratic program. i.e. 

i. positive definite if and only if L� > 0, L� > 0,… , L� >0 that is all principal minors are strictly greater than 

zero, 

ii. negative definite if and only if 	L� < 0, L� > 0, LP <0,… that is all principal minors alternate in sign starting 

with negative one (or the value of the QRS  leading 

principal minor has the sign of (−1)T), 

iii. positive semi definite if and only if all principal minors 

are greater than or equal to zero, 

iv. negative semi definite if and only if all principal 

minors of odd degree are less than or equal to zero, and 

all principal minors of even degree are greater than or 

equal to zero. 

A bi-objective programming problem, which both the 

objective functions are definite quadratic is called definite 

quadratic bi-objective program. Consider the following 

definite quadratic bi-objective programming problem. 

(IU�D):	 ��(�, W) = $�1,X	234 � + +�W + (�� , W�)D ?�WC (6) 

	��(�, W) = Y�� + 9�W + (�� , W�)� ?�WCX	234  

Subject to G� + IW ≤ �	$%
	�, W ≥ 0 

Where � ∈ ��Z , W ∈ ��[; $, Y ∈ ��Z; 	+, 9 ∈ ��[; 	� ∈�2; D	$%
	�	$]-	(%� + %�	)�(%� + %�)  real symmetric 

definite matrices and with � = ^�� ����� �P _  A and B are &�%�	$%
	&�%�  matrices respectively. The second 

objective function becomes 

��X234 (�, W) = Y�� + 9�W + (�� , W�) ^�� ����� �P _ ?�WC 

��X⟹	234 (�, W) = Y�� + 9�W + ����� +W���� + �����W + W��PW = Y�� + 9�W + ����� + 2�����W +W��PW, )E%.-	W���� = �����W. ⟹	 ��X234 (�, W) = Y�� + (9 + 2���)�W +����� + W��PW. 

Therefore, �� can be written as W��PW + (9 + 2���)�W +����� + Y��. 

If a constant term exists, it is dropped from the model 

since it plies no role in the optimization step. So � is fixed 

prior to the maximization of	��, because of the fact that the 

second objective function the decision variable W only. 

The second objective problem is equivalent to D(�):	 ��(�, W) = W�X234 �PW + (9 + 2���)�W        (7) 

Subject to IW ≤ � − G�	$%
	W ≥ 0 

Therefore, problem BOQP becomes equivalent to 

(IU�D�): ��(�, W) = $�� + +�W + (��1,X234 , W�)D ?�WC (8) 

��(�, W) = W�X	234 �PW + (9 + 2���)�W 

Subject to IW ≤ � − G�	$%
	W ≥ 0. 

In this study, the researcher assumed that bi-objective 

programming problem is considered; the objective functions 

are convex with positive semi definite matrices P and Q on 

minimization type of problems and the second objective 

function controls the decision variable W only. On the other 

hand, the researcher was assumed to be concave objective 

function with negative semi definite matrices P and Q on 

maximization type of problems and the second objective 

function controls the decision variable W only with convex 

polyhedron region determined by linear constraints. 

The aim of doing this research was solving the definite 

quadratic bi-objective programming problems by using KKT 

conditions and lingo (15.0) mathematical software. So, it is 

obligate that knowing the concept of Karush-Khun-Tucker 

Conditions. 

Karush-Kuhn-Tucker Conditions: The Lagrange 

multipliers can be used to develop optimality criteria for the 

equality constraint. Khun and Tucker extend this theory to 

include equality and inequality constraint problems i.e. 	max �(�)                                       (9) ). /	d7(�) ≤ 0	�0]	, = 1, 2, … , e 	ℎ((�) = 0	�0]	g = 1, 2, …Q. 

Kuhn and Tucker developed the necessary and sufficient 

conditions for the NLP problem by assuming	�, d7  and 	ℎ( 

are differentiable. The general NLP problem is given by  max �(�) 
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). /	d7(�) ≤ 0	�0]	, = 1, 2, … , e 	ℎ((�) = 0	�0]	g = 1, 2, …Q, 

where	� is nonlinear or/and d7 and 	ℎ( are nonlinear. 

To solve this problem, we write the Lagrange function: h(�, i, j) = �(�) − ∑ i7k78� d7(�) − ∑ j(T( ℎ((�)  (10) 

To find the critical point 0�	h, lml1n = 0	�0]	E = 1, 2, … %. 

The KKT conditions are stated as: Find vectors 	�(o1�),	i(�1k) and j(�1T) that satisfy 

∇�(�) − ∑ i7k78� ∇d7(�) − ∑ j(T( ∇ℎ((�) = 0   (11) 

d7(�) ≤ 0	�0]	, = 1, 2, … , e 	ℎ((�) = 0	�0]	g = 1, 2, … , Q i7d7(�) = 0	�0]	, = 1, 2, … , e i7 ≥ 0	�0]	, = 1, 2, … , e 
Observe that for the minimization problem, all one needs 

to do is to change the minus sign in the Lagrange to plus, 

because finding a minimum for � is the same as finding a 

maximum for −�. 

Note that the above KKT condition is a necessary 

condition (in general) but is also sufficient for convex 

problems. 

Theorem 3.1: (Kuhn-Tucker Necessary Theorem) 

Consider the NLP problem and let � , d7  and 	ℎ(  be 

differentiable functions and �∗ be a feasible solution to the 

NLP problem. Let r = s,:	d7(�) = 0t. 
Further, ∇d7(�∗)	�0]	, ∈ r	$%
	∇ℎ((�∗)	�0]	g =1, 2, … , Q  are linearly independent. If �∗  is an optimal 

solution to the NLP, then there exists (i∗, j∗)  such that (�∗, i∗, j∗) solves the KT problem. 

Proof: The proof of theorem 3.1 found on [7]. 

The conditions ∇d7(�∗)	�0]	, ∈ r	$%
	∇ℎ((�∗)	�0]	g =1, 2, … , Q are linearly independent at the optimum is known 

as the constraint qualification and this constraint qualification 

holds in the following cases: 

i. when all the constraints are linear 

ii. when all the inequality constraints are concave 

functions and the equality constraints are linear and 

there exists at least one feasible � that is strictly inside 

the feasible region of the inequality constraints. In other 

words, there exists an � such that d7(�) < 0	�0]	, = 1, 2, … , e	$%
	ℎ((�) = 0	 �0]	g = 1, 2, … , Q. 

Note that when the constraint qualification is not met at the 

optimum, there may not exist a solution to the Kuhn-Tucker 

problem. Therefore, do not apply the Kuhn-Tucker optimality 

conditions when the constraint qualification is not met. 

We know that a quadratic programming problem is a 

special type of the NLP problem that one either minimize or 

maximize a quadratic objective function subject to linear 

constraints. Therefore, we can apply the Kuhn-Tucker 

optimality conditions because the constraint qualification is 

fulfilled since the constraints are linear. Depending on this 

reason, let us consider the following optimality conditions for 

the quadratic programming problem. 

Consider the quadratic programming problem 

��	 �(�) = �12u�	 � + ������                  (12) 

). /	G� ≤ +	�0]	0 ≤ � 

A pair (�, i) ∈ ����2  is said to be a karush-kuhn- 

tucker pair (or KKT pair) for the quadratic program �� if and 

only if the following conditions are satisfied: 0 ≤ �, G� ≤ +	(Y]E&$h	�-$)E+EhE/v) 0 ≤ i, 0 ≤ � + �� + G�i	(
*$h	�-$)E+EhE/v) 0 = i�(G� − +), $%
	 0 = ��(� + �� + G�i)	(.0&Yh-&-%/$]E/v) 
Theorem 3.2: (Necessary Conditions for Optimality in 

Quadratic Programming) 

Consider the quadratic programming problem 	�� . If �w 	∈ ��  solves 	�� , then there exists a vector i∗  such that (�w, i∗) is a KKT pair for ��. 

Before going to solve the optimal solution of the definite 

quadratic bi-objective programming problem, we have to 

check whether the solutions of a given program exist, and 

unique or not. Because of this reason, consider the following 

existence and uniqueness theorem. 

Theorem 3.3: (Weierstrass Theorem: Existence of a 

Solution) 

If �: �� → � is continuous function, and � is a non-empty, 

closed and bounded subset of �� , then there exists ��	$%
	��	E%	�	)*.ℎ	/ℎ$/	�(��) ≤ �(�) ≤ �(��)  for all � ∈ �. 

Proof: The proof of theorem 3.3 found on [1]. 

Take the idea of Weierstrass Theorem on equation D(�) of 

the above lower objective function. Let � be a feasible set. 

Suppose �  non-empty, closed, bounded and ��  is a convex 

objective function, then there exists a global optimum point 

for ��. 

Theorem 3.4: (Uniqueness of a Solution for D(�) ) 
Suppose S is non-empty, closed, bounded and convex subset 

of �� and suppose that �� is strictly convex (concave) function 

on S. Then there exists �∗ ∈ �  such that ��(�∗) < ��(�) 
(respectively,	��(�∗) > ��(�) ) for all � ∈ � where � ≠ �∗. 

To assure that KKT optimality conditions are both 

necessary and sufficient for obtaining the global optimum of 

the inner problem, consider the following theorem. 

Theorem 3.5: (Necessary and Sufficient Condition for 

Optimality in Convex QP problem D(�)) 
If �  is symmetric and negative semi-definite, then (�w, Ww)	solves D(�)	 if and only if there exists yz  such that (�w, W,z yz )is a KKT pair for	D(�). 
Proof: The proof of Theorem 3.5 found on [4]. 
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Consider IU�D� and apply KKT conditions on the second 

objective function programming problem by considering � as 

fixed. i.e. 

The lagrangian function of the second objective function 

programming problem is {(�, W,y) = W��PW + (9 + 2���)�W −y�(G� + IW − �)                    (13) 

Then |{(�, W,y)|W = 0 

y�(G� + IW − �) = 0 G� + IW ≤ � 

⇒	~2��� + 2�PW + 9 = I�yy�(G� + IW) = y��G� + IW ≤ �                      (14) 

where y is Lagrange multiplier 

By considering (14) as a constraint function for the first 

objective function programming problem, we get 

�:	
	 	��(�, W) = $�� + +�W + (�� , W�)D ?�WC	1,X234 	G� + IW ≤ �		y�(G� + IW) = y��		2��� + 2�PW + 9 = I�y		�, W,y ≥ 0

         (15) 

We have that (�) is a single level maximization problem 

with one quadratic objective function and the constraints are 

nonlinear. Now we can solve problem �  by Lingo (15.0) 

software because of the fact that this software is appropriate 

for solving the optimal solution for such likes of problems.	
Therefore, the following necessary and sufficient 

optimality for IU�D� (theorem 3.6) is clarified that the point 

that solves the problem (�)  is an optimal solution to the 

quadratic programming problem IU�D� 

Note: An optimal solution is a feasible solution that has a 

maximum objective function value for maximization type of 

problem or a minimum objective function value for 

minimization type of problems. 

Let	� = �(�, W): G� + IW ≤ �; �, W ≥ 0�, and S assumed 

to be closed and bounded. 

For problem IU�D�, the first objective function solution 

space is given by � = �� ∈ ��Z: /ℎ-]-	-�E)/)	W	)*.ℎ	/ℎ$/	(�, W) ∈ ��. 
The second level solution space given by �(�) = �W ∈ ��[: (�, W) ∈ ��. 
For each � ∈ �, W(�) = �W ∈ �(�): ��(�, W) =��(�, W)�0]	$	dE�-%	�X234 �  denotes the set of optimal 

solutions to the second objective programming problem. �̅ = �(�, W): (�, W) ∈ �, W ∈ W(�)�  denotes the set of 

solution points to IU�D� and is called the induced region of 

problem IU�D�. 

A point (�∗, W∗) is said to be optimal to problem IU�D� if 

i. (�∗, W∗) ∈ �̅ 
ii. ��(�∗, W∗) ≥ ��(�, W)	∀(�, W) ∈ �̅ 
Theorem 3.6: (Optimality Condition for IU�D�) (�∗, W∗)  is an optimal solution to the quadratic 

programming problem IU�D�  if and only if there exists a 

vector y∗ ∈ �2  such that (�∗, W∗,y∗) solves the following 

nonlinear programming problem. 

M: 

	 	��(�, W) = $�� + +�W + (�� , W�)D ?�WC	1,X234  

	G� + IW ≤ �		                               (16) 	y�(G� + IW) = y��		                      (17) 	2��� + 2�PW + 9 = I�y	                     (18) 	�, W,y ≥ 0	                                (19) 

Proof: Let (�∗, W∗) be an optimal solution to IU�D�. Then (�∗, W∗) ∈ �̅ and ��(�∗, W∗) ≥ ��(�, W)	∀(�, W) ∈ �̅ . This implies that W∗ 
solves the relaxed second objective function given by D�(�):	 ��(�∗, W) = W�X234 �PW + (9 + 2���∗)�W 

Subject to IW ≤ � − G�∗	$%
	W ≥ 0 

Therefore, by Kuhn Tucker necessary conditions, there 

exist a y∗ ≥ 0 such that 

y∗B(G�∗ + IW∗ − �) = 0 2���∗ + 2�PW∗ + 9 − I�y∗ = 0 G�∗ + IW∗ ≤ � 

which implies that (�∗, W∗,y∗)  is a feasible solution to 

problem	�. We will show that it is an optimal solution to �. 

If (�∗, W∗,y∗) is not an optimal solution to problem	�, then 

there exists (�w, Ww,yz )  satisfying (16)-(19) and 	��(�w, Ww) ≥	��(�∗, W∗). As � is a negative semi-definite problem D�(�) is 

a concave maximization problem. Therefore (16)-(19) are 

sufficient conditions for Ww to be an optimal solution. Hence Ww ∈ W(�w)  and ��(�w, Ww) ≥ 	��(�∗, W∗) . This contradicts that (�∗, W∗)  is optimal to problem 	IU�D� . Therefore, (�∗, W∗,y∗) is optimal to problem 	� . Conversely, assume 

that there exists a y∗ ∈ �2 such that (�∗, W∗,y∗) solves �. 

We will show that (�∗, W∗) solves IU�D�. As shown above W∗ ∈ W(�∗) . For any (�, W) ∈ �̅, W ∈ W(�)  implies that W 

solves D(�). So, by Kuhn Tucker necessary conditions, there 

exists a y ≥ 0 such that (16)-(19) hold. Thus (�, W,y)  is 

feasible to � and hence	��(�∗, W∗) ≥ f�(X, Y), which proves 

that (�∗, W∗) solves	IU�D�. 

The stepwise description of the method that of solving the 

optimal solution of definite quadratic bi-objective 

programming problem using KKT conditions is as follows: 

Given a definite IU�D; 
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��(�, W) = $�1,X	234 � + +�W + (�� , W�)D ?�WC       (20) 

	��(�, W) = Y�� + 9�W + (�� , W�)� ?�WCX	234  

Subject to G� + IW ≤ �	$%
	�, W ≥ 0 

Step 1: Formulate the single objective problem by 

applying KKT conditions on the second objective function by 

considering � as fixed 

�:	
	 	��(�, W) = $�� + +�W + (�� , W�)D ?�WC	1,X234 	G� + IW ≤ �		y�(G� + IW) = y��		2��� + 2�PW + 9 = I�y		�, W,y ≥ 0	

     (21) 

where, y is Lagrange multiplier 

Step 2: Solve problem � by LINGO (15.0). 

Example 3.1. Consider the following definite quadratic bi-

objective programming problem ��(�, W) = 6� + 3W − ��1,X234 − W� ��(�, W) = � + 5W − W�X234  � + W ≤ 5 3� + 2W ≤ 9 

2� + W ≤ 6 where �, W ∈ �	$%
	�, W ≥ 0 

The lagrangian function for the second objective function 

is {(�, W,y�,y�,yP) = � + 5W − W� −y�(� + W − 5) −y�(3� + 2W − 9) −yP(2� + W − 6) 
First, apply KKT conditions on the second objective 

function by considering X as a fixed. |{(W,y�,y�,yP	)|W = 0 

y�(� + W − 5) = 0 y�(3� + 2W − 9) = 0 yP(2� + W − 6) = 0 � + W ≤ 5 3� + 2W ≤ 9 2� + W ≤ 6 �, W,y�,y�,yP ≥ 0 , where y�,y�,yP  are langrage 

multipliers. 

⇒
���
�� 2W +y� + 2y� +yP = 5y�(� + W) +y�(3� + 2W) +yP(2� + W) = 5y� + 9y� + 6yP� + W ≤ 53� + 2W ≤ 92� + W ≤ 6

                                       (22) 

By taking (22) as a constraint function, then we can get the following problem ��(�, W) = 6� + 3W − �� − W�1,X234 2W +y� + 2y� +yP = 5 		y�(� + W) +y�(3� + 2W) +yP(2� + W) = 5y� + 9y� + 6yP		� + W ≤ 53� + 2W ≤ 92� + W ≤ 6
                                   (23) 

If �, W,y�,y�,yP  solves (23), then �, W  is the optimal 

solution of the definite BOQP problem. By using LINGO 

(15.0) software, we can get the optimal solution of problem 

(23), so the solution of (23) is 	(�, W,y�,y�,yP) =(2.308, 1.038, 0, 1.462, 0)  and it is really satisfies all 

systems of (23). Therefore, 	� = 2.308	$%
	W = 1.038  are 

the optimal solution of the definite quadratic bi-objective 

programming problem and the value of the objective 

functions are �� = 6.421, and	�� = 10.558 

Example 3.2. Consider the following quadratic bi-objective 

programming problem ��(�, W) = 3�� + 4W� − 2� − 2W1,X2u�  

��(�, W) = 5��X2u� + 2W� − � − 2W 2� + W ≥ 2 � + 3W ≤ 7 �, W ≥ 0 

Applying KKT conditions on the second objective 

problem, then the corresponding quadratic programming 

problem is ��(�, W) = 3�� + 4W� − 2� − 2W1,X2u�  4W −y� + 3y� = 2 y�(−2� − W) +y�(� + 3W) = 7y� − 2y� 2� + W ≥ 2 
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� + 3W ≤ 7 �, W,y�,y� ≥ 0 

Where y� and y�are langrange multipliers. Then by using 

LINGO software we have,	(�, W,y�,y�) = (0.75, 0.5, 0, 0), 
from this � = 0.75	$%
	W = 0.5 are the optimal solution of 

the definite quadratic bi-objective programming problem and 

the value of the objective functions are �� = 1.563  and �� = 0.188. 

4. Conclusions and Recommendation 

4.1. Conclusion 

In this paper, the researcher used KKT conditions. Finally, 

using LINGO (15.0) software the problem was solved. 

Numerical examples were considering to show the efficiency 

of the proposed algorithm. The KKT conditions is simple to 

find the optimal solution of BOQP Problems. 

4.2. Recommendation 

In this paper, KKT conditions is proposed to solve definite 

quadratic bi-objective programming problems. These 

techniques can easily extend for definite quadratic bi-

objective fractional programming problems. 
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