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Abstract: Many small-scale farmers require adequate forecasts to help them plan for the rainfall. The National 

Meteorological Service provides forecasts seasonally, monthly and weekly. The forecasts are qualitative in nature hence 

inform, but cannot be directly used with decision support models. It is therefore important to consider forecast methods that 

researchers can use to generate quantitative data that can be applied in the models. In particular, an increasing need for 

forecasting daily rainfall data. In this study, the ARIMA and VAR models have been used to forecast five time period data for 

daily, monthly and seasonal rainfall data. The objective was to find the model parameters that best fit the three time periods. 

Fifty-year data from Kenya Meteorological Station, Kisumu, was used for the analysis. For each time period, five events were 

used as the test dataset. The ARIMA model was found to be best for forecasting daily rainfall in comparison to the VAR model, 

while SARIMA was best for monthly and seasonal data. One difference was done for the seasonal rainfall total, but not for 

monthly and monthly rainfall data. The VAR models included the available daily minimum and maximum temperatures. 

However, forecasted daily rainfall deviated from the test data, while monthly and seasonal data deviated even more. 
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1. Introduction 

In Kenya, weather forecasting is the reserve of the Kenya 

Meteorological Services [1]. They monitor the oceanic wind 

movements, the Indian Ocean Dipoles, and predict the weather 

for seasons, months and weeks. Such forecasts are usually in 

qualitative form and focus on rainfall, cloud cover and sunrise. 

They use the common terms like “normal”, “above normal” 

and “below normal” to represent the intensity of rainfall in 

comparison to the long-term average. This is particularly 

useful for the small-scale farmers who depends on rain fed 

agriculture. In addition to weather forecast, researchers use 

mathematical Decision Support Tools (DSTs) to help farmers 

make informed decisions on risk involved. Such tools, most of 

which are crop models, require detailed information which are 

not provided in the KMS forecasts. 

The Decision Support Tools (DSTs) are used by researchers 

across disciplines to help make informed decisions. They can 

be calculations on papers, apps or software. There are many of 

them and they cover all disciplines. For instance, in 2016, 

David Rose and colleagues catalogued 395 DSTs specific for 

Agriculture [2]. The DSTs used mathematical equations and 

utilized available information to help make decisions. The 

models can be simplistic, for example Food and Agricultural 

Organizations (FAOs) CROPWAT [3]. This is a computer 

program for irrigation planning and management that utilizes 

the crop satisfaction index using ten-day (dekadal) data. Others 

like DSSAT [4] and APSIM [5] are more complex and require 

inputs like daily weather data and farm management options. 

The DSTs help researchers and farmers make future decisions 

using actual quantitative data. Most of the DSTs require a 

minimum of daily rainfall data in order to calculate water 

satisfaction indices for crops. Thus, consideration of forecast 

methods that can provide quantitative data is important. Time 

series is a main methodology used for forecasting quantitative 

data. 

Time series analysis and forecasting utilizes the time lag to 

forecast the next few events in similar time gaps. One of the 

best parametric time series models is the ARIMA model that 

integrates Auto Regression and the Moving Averages to 

generate a model of best fit. The ARIMA models have been 

used for rainfall forecasting, for instance, Somvanshi [6] used 
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it for Hyderabad region in India using 93 years of annual data 

as the train data and 10 years as the test data, and Uruya 

found ARIMA models to be better than ARMA when 

forecasting rainfall data over Thailand using data from 31 

stations [7]. In Africa, Abdul-Aziz used seasonal data for 

Ashanti Region, Ghana, for the period 1974 to 2010 [8]. He 

included the seasonal component in the ARIMA model and 

used it to forecast monthly rainfall totals [8]. In addition, 

Gorka [9] used ARIMA and the Artificial Neural Networks 

(ANN) to forecast weekly evapotranspiration for Northern 

Spain. Aris, [10] found ARIMA (2,1,2) 1,1,2) [6] as best 

model to forecast daily evapotranspiration over Nile Delta 

Region, Egypt. The main element was evapotranspiration, as 

opposed to rainfall which was of interest in this study. None 

of the studies modeled using daily rainfall data, which is an 

important component for use in DSTs. 

The ARIMA models are univariate and focus on time lags 

for observed values and the white noise, and differencing in 

order to make the data stationary. However, statistically 

speaking, multivariate models would explain more variability 

in the white noise. Thus, we considered a multivariate time 

series model for forecasting. The data used had the daily 

minimum and maximum temperatures. These were used in a 

Vector Auto Regression (VAR) model. VAR models have been 

used in macroeconomic studies to provide very useful 

forecasts. Examples of VAR in use include the study of 

Australian Economy where 11 variables were used to study the 

economy for 19 years starting 1980 [11]. The cointegrated 

VAR models have also been applied to find the direct effects of 

oil price shocks in the output and price for the G-7 countries 

[12]. The VAR model was used in Semarang-Central Java 

Indonesia where the rainfall was coupled with humidity and 

temperature to forecast with the results showing that it was 

better than ARIMA [13]. In this study, we used the VAR model 

to predict the next five events of rainfall and temperature data. 

The events were in time gaps of days, month and seasons. 

Comparison of model performances are not new area of 

study. For instance, Adamowski [14] compared linear 

models, the ARIMA model and Artificial Neural Networks 

(ANN) to forecast peak daily water demands for the summer 

months residents of Ottawa, Canada. His models showed that 

ANN was better than the other two, however, he focused on 

rainfall occurrence compared to amount, which is of interest 

in this study. For this project, the main interest is to forecast 

actual rainfall data in a most precise method. 

2. Methodology 

This is analysis of rainfall data from Kisumu 

meteorological station. Trend analysis using Auto Regressive 

Integrated Moving Average (ARIMA) was conducted for the 

daily, monthly, seasonal and annual values. An ARIMA 

(p,d,q) model constitutes AR (p), I (d) and MA (q). The 

Integrated (I) part considers the number of differences used 

to make the data stationary. The Auto Regressive (AR) 

component of the model considers the influence values of 

previous p terms on the current term. The Moving Average 

(MA) gives the influence of the previous q value of error 

terms on the current. The Vectorized Auto Regressive (VAR) 

model is a multivariate time series analysis model that 

applies the Auto Regression on a vector, depending on the 

specified lag. VAR (p) considers the effect of the last p terms 

in the vector on the events in current time. 

All the analysis used data from the Kenya Meteorological 

Services (Kisumu), for the period 1961-2014. Daily data was 

used to generate the monthly, seasonal and annual summaries 

in this paper. All analysis was conducted in R. The models 

were fit using a train dataset and a test dataset of a five-

period time gap used for testing the accuracy of forecasts 

from the models. 

3. Results and Discussions 

3.1. General Annual Rainfall 

Kisumu experiences a bimodal rainfall pattern (Figure 1) 

with the long rains experienced between March and May and 

the short rains experienced between October and December. 

January and February are usually the driest months, except 

for some sporadic rainfall. Figure 1 gives the average of the 

total monthly rainfall using data from Kenya Meteorological 

Services station in Kisumu using daily data between 1961 

and 2014. Sometimes it is hard to distinguish the seasons 

since the rainfall continue into the next. 

 

Figure 1. The long-term average cumulative rainfall for different months for Kisumu. 
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3.2. Fitting ARIMA Models to the Precipitation Data 

The data was further plotted in order to check for trend, 

seasonality and cyclicity. A general plot was used (Figure 2) 

to explore it. From the figure, the daily and annual total 

rainfall exhibited white noise. However, monthly total 

rainfall had seasonality in them. In order to well differentiate 

noise from the signals, the Autocorrelation functions (ACFs) 

were plotted. 

 

Figure 2. Trend graphs for Kisumu rainfall data (1961 - 2014). 

To interpret Figure 3, consider shape of the graph. The first graph, for daily, shows that the ACFs decrease exponentially. 

This is considered as an interpretation of white noise. The last graph of total annual rainfall has bars not exceeding the blue 

horizontal lines. This is also indicative of stationarity. 

 

Figure 3. ACF plots for the KMS Kisumu rainfall data. 



42 Mawora Thomas Mwakudisa et al.:  Fitting Time-series Models to Kisumu Rainfall Data for the Period 1961-2014  

 

 

The ACF plots in Figure 3 show that the total annual 

rainfall was random while daily, monthly and seasonal totals 

had significant ACF values at lags greater or equal to 1. This 

justified the use of ARIMA models for the daily, monthly and 

seasonal since at least one difference will be required. 

The models were generated using the auto. arima function 

of the forecast library in R 3.6.0. The function used the 

Bayesian Information Criterion (BIC) and the Akaike’s 

Information Criterion (AIC) to test for model of best fit. The 

model whose BIC and AIC values were lowest were selected. 

As expected, the more the parameters, the lesser the AIC 

value. Thus, BIC was particularly useful since it added a 

penalty term for every coefficient included in the model. 

The models were generated for the daily, monthly, 

seasonal and annual data. Differencing was not done to any 

of the data, except seasonal differencing conducted on the 

seasonal data (Table 1). Daily data exhibited an ARMA 

model, monthly exhibited ARMA model with monthly AR 

while annual data was purely white noise since the bars do 

not cross the blue horizontal lines. One seasonal difference 

was conducted on the seasonal data to make the seasonal 

stationary, but in both cases the AR component explained 

more than the MA component. 

Table 1. Results of the best fitting ARIMA model for daily, monthly, seasonal and annual rainfall data using KMS rainfll data for kisumu (1961 - 2014). 

parameter Estimate se z p LB UB 

ARIMA (1,0,2) with non-zero mean for the daily rainfall data 

AIC=142539.5 AICc=142539.5 BIC=142578.9 

ar1 0. 918 0.014 66.804 < 2.2e-16 0. 891 0.945 

ma1 -0.817 0.016 -52.138 < 2.2e-16 -0. 848 -0. 786 

ma2 -0.040 0.008 -4.769 < 2.2e-16 -0.057 -0.024 

intercept 3. 717 0.116 32.016 < 2.2e-16 3.489 3.944 

ARIMA (1,0,3) (2,0,0) [12] with non-zero mean for the total monthly rainfall data 

AIC=7238.99 AICc=7239.22 BIC=7274.63 

ar1 0.527 0.419 1.256 0.209 -0.295 1.348 

ma1 -0.366 0.419 -0.875 0.382 -1.187 0.454 

ma2 -0.099 0.076 -1.312 0.190 -0.247 0.049 

ma3 -0.107 0.052 -2.072 0.038 -0.209 -0.006 

sar1 0.137 0.041 3.306 0.001 0.056 0.218 

sar2 0.243 0.041 5.991 <2e-16 0.163 0.322 

intercept 113.756 4.008 28.381 <2e-16 105.900 121.612 

ARIMA (1,0,0) (1,1,0) [4] with drift for the total seasonal rainfall 

AIC=2605.91 AICc=2606.11 BIC=2619.2 

ar1 0.001 0.070 -0.001 0.999 -0.137 0.137 

sar1 -0.522 0.060 -8.671 <2e-16 -0.640 -0.404 

ARIMA (0,0,0) with non-zero mean for the total annual rainfall 

AIC=645.73 AICc=645.99 BIC=649.47 

intercept 1372.075 27.942 49.104 < 2.2e-16 1317.31 1426.84 

 

The time gap and the and the unit summed differed for the 

different scenarios. Thus we let ����  be the amount of 

rainfall experienced on day�� , ����  be the total monthly 

rainfall for month �� and ���	  be the total seasonal rainfall 

for season ��. The ARIMA models above can be represented 

as below. 

3.2.1. ARIMA for the Daily and Annual Data 

The total annual rainfall was completely random hence did 

not fit any ARIMA model. The average total annual rainfall 

experience at KMS Kisumu was 1372.075 mm with a 95% 

Confidence interval of (1317.31, 1426.84) mm. Because of 

this, annual data was not used for forecasting. 

The daily rainfall was stationary hence no differencing was 

done, with the best model being ARIMA (1,0,2) model. This 

ARMA model had statistically significant coefficients (p-

value<0.05) for the single AR and the two MA terms. The mean 

was none zero, hence the intercept was 3.7171 mm of rainfall. 

The model can be represented using the notations as below. 

���� = � +	�����(����) + ��� +	�����(����) +	�����(����)	                                         (1) 

And when the coefficients are fit, the model is written as ���� = 3.717 + 	0.918��(����) − 	0.817��(����) − 	0.040��(����)	                                 (2) 

The model shows that the amount of rainfall experienced 

on the previous day contributed positively to the amount 

recorded for the next day. However, the error terms 

experienced on the preceding two days had reducing effect 

on the amount of rainfall experienced on the day of interest. 

3.2.2. SARIMA for the Monthly and Seasonal Data 

The monthly data and the seasonal data both exhibited 

seasonality of frequencies twelve (12) and four (4) 

respectively. The model selected for the monthly data was 
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ARIMA (1,0,3) (2,0,0) [12] with non-zero mean, while for 

the seasonal data was ARIMA (0,0,1) (2,1,0) [4] with drift. 

The ARIMA (1,0,3) (2,0,0) [12] for the monthly total 

rainfall indicated that the amount of rainfall experienced in 

the same months for two preceding years contributed 

significantly to the amount of cumulative rainfall for the 

month of interest. The model above is be represented as: 

���� = � +	�����(����) +��� +	�����(����) +	�����(����) +	� ���(��� ) +	�����(�����) + � ���(����!)	  (3) 

And as below after using the modelled coefficients 

���� = 113.756 + 	0.527��(����) − 0.366��(����) − 0.099��(����) − 0.107��(��� ) + 	0.137��(�����) + 0.243��(����!)  (4) 

However, in the above model, only the seasonal AR terms 

and the non-zero mean had statistical significance at % =0.05. The other AR and MA terms all had p-values greater 

than 0.05 hence there was not enough evidence to reject the 

null hypothesis that the coefficients are different from zero 

(0). 

The ARIMA (1,0,0) (1,1,0) [4] for the seasonal total 

rainfall showed that the amount of rainfall experienced in the 

same season in the previous year contributed significantly to 

the amount of cumulative rainfall for the current. The 

Seasonal Auto Regression lag had a decreasing component, 

an indication of long-term decrease in rainfall amount. One 

difference was used to make the seasons component 

stationary. Only the seasonal AR terms had statistical 

significance at % = 0.05. The AR term had p-value greater 

than 0.05 hence the we fail to reject the null hypothesis that 

the coefficients are different from zero (0). The equation for 

the model may be represented as below: ���	 − �(�	�!)� = & +	���'��(�	��) −	��(�	��)( + ���'�(�	��)� −	�(�	�))� (	                                  (5) 

When the coefficients have been included, the model becomes: ���	 − �(�	�!)� = & + 	0.001'��(�	��) −	��(�	��)( − 0.522'�(�	��)� −	�(�	�))� (	                             (6) 

3.3. Forecasting Precipitation Data 

For the above analysis, the train data was used to fit models 

appropriate for the region. A test dataset was left out for 

forecasting purpose and to test the strength of the models used. A 

test data of 5 values were used. Although this figure was selected 

arbitrarily, a lot of importance is attached to the next day, month 

or season for general forecasts. The annual data was excluded 

from the forecasts since the model was simply an average. 

Table 2 has several measures of forecast accuracy, they 

include the Mean error (ME), the Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Percentage 

Error (MPE), Mean Absolute Percentage Error (MAPE) and 

Mean Absolute Scaled Error (MASE). The MASE is the 

quotient of MAE and a scaling constant. The ARIMA 

functions generated were useful since they are assumed to 

provide the lowest forecasting errors for the data. 

Table 2. Testing for accuracy of forecasted data using KMS Kisumu rainfall data. 

  ME RMSE MAE MPE MAPE MASE ACF1 Theil’s U 

Daily 
Training 0.000 9.285 5.175 -Inf Inf 0.907 0.000 NA 

Test set -2.637 2.651 2.637 -Inf Inf 0.462 0.264 0 

Monthly 
Training -0.488 70.650 53.818 -Inf Inf 0.774 -0.001 NA 

Test set 17.911 61.436 56.487 -1907.207 1950.424 0.813 -0.099 0.328 

Seasonal 
Training -5.460 135.007 105.472 -16.462 39.683 0.846 0.005 NA 

Test set 104.919 286.668 237.370 2.852 61.454 1.904 -0.526 1.065 

 

The forecasted values are provided in Table 3 for the next 

five time periods, that is days, months and seasons. The 

monthly and seasonal forecasts did not deviate very much 

from the long-term averages, except for the fourth quarter. Of 

importance is the forecast for the days. The forecasted values 

ran for the period 1
st
 July 2014 to 5

th
 July 2014. The 

forecasted values were all above 2 mm of rain. When you 

compare the forecasted value to the long-term average value 

in the last column of Table 3, there was some disparity as 

expected. Further analysis of the exact periods for the 

preceding 53 years showed that there was no rain for the said 

days for at least 60% of the years. A major reason may be 

assumed to be because of one event in which an extreme 

value of 128 mm was experienced in one day. We therefore 

generated a VAR model by adding the daily minimum and 

maximum temperatures to create the vector. 

Table 3. Forecasted rainfall for the following five time periods. 

Date Forecast Lo 80 Hi 80 Lo 95 Hi 95 Long term average 

26-Jun-2014 2.479 -9.420 14.378 -15.719 20.676 1.983 

27-Jun-2014 2.682 -9.278 14.642 -15.609 20.973 3.396 

28-Jun-2014 2.767 -9.210 14.743 -15.550 21.083 1.594 

29-Jun-2014 2.844 -9.146 14.835 -15.493 21.182 1.272 

30-Jun-2014 2.916 -9.086 14.918 -15.440 21.271 2.862 
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Date Forecast Lo 80 Hi 80 Lo 95 Hi 95 Long term average 

Month       

Jan 2014 97.441 6.899 187.983 -41.032 235.913 81.268 

Feb 2014 102.247 10.547 193.946 -37.995 242.489 80.432 

Mar 2014 140.636 48.927 232.345 0.3794 280.893 164.936 

Apr 2014 123.779 31.480 216.077 -17.380 264.938 217.183 

May 2014 131.745 39.283 224.207 -9.663 273.153 162.379 

Season       

2013 Q2 483.890 309.192 658.5883 216.7123 751.068 544.498 

2013 Q3 249.306 74.608 424.0046 -17.8714 516.484 228.443 

2013 Q4 153.773 -20.925 328.4714 -113.4046 420.951 323.608 

2014 Q1 193.297 18.598 367.9948 -73.8812 460.474 264.217 

2014 Q2 505.036 311.406 698.6665 208.9044 801.168 544.498 

 

3.4. Including Temperature Data in the Models 

The Vector Auto Regressive (VAR) models were used to 

conduct a multiple time series analysis. The VAR models are 

Auto Regressive models for a vector. In this case the vector 

constituted rainfall, minimum and maximum temperatures. 

Given that *� = [*�� , *�� , * �]� , then the VAR (p) model is 

represented as: ��� = ./ +∑ .1����2213�	 +	���               (7) 

Where 45���6 = 0  and 45���, �76 = 8 Ω, if	t = τ0, >�ℎ�@�AB�	 . The 

model was run with a maximum of 5 lags to produce the 

output in Table 4. In the VAR (5) model, the five lags of 

rainfall contributed significantly to the rainfall at time t. 

Minimum temperature contributed significantly at the first 

three lags while only the first two lags of maximum 

temperature contributed significantly. 

Table 4. VAR (5) model for the predicting rainfall considering lagged rainfall, minimum and maximum temperatures. 

 Estimate Std. Error t value Pr (>|t|) 

Rain. l1 0.099 0.007 13.839 < 2e-16 

MaxT. l1 -0.109 0.050 -2.189 0.02864 

MinT. l1 0.233 0.061 3.827 0.00013 

Rain. l2 0.046 0.007 6.426 1.34e-10 

MaxT. l2 -0.112 0.057 -1.950 0.05120 

MinT. l2 0.133 0.067 1.981 0.04758 

Rain. l3 0.028 0.007 3.910 9.25e-05 

MaxT. l3 0.066 0.057 1.158 0.24675 

MinT. l3 0.193 0.067 2.856 0.00430 

Rain. l4 0.049 0.007 6.763 1.39e-11 

MaxT. l4 -0.049 0.057 -0.851 0.39479 

MinT. l4 -0.041 0.067 -0.614 0.53901 

Rain. l5 0.031 0.007 4.347 1.39e-05 

MaxT. l5 -0.002 0.050 -0.042 0.96651 

MinT. l5 0.101 0.060 1.682 0.09258 

const -1.847 1.492 -1.238 0.21575 

Residual standard error: 9.278 on 19518 degrees of freedom 

Multiple R-Squared: 0.02975, Adjusted R-squared: 0.029 

F-statistic: 39.9 on 15 and 19518 DF, p-value: < 2.2e-16 

Using *���� , *����  and * ���  as the rainfall, minimum and maximum temperatures respectively, then model can be represented as: 

C*����*����* ��� D = E−1.8476.4923.320 F + E 0.099 −0.109 0.233−1.310� − 2 0.547 1.683� − 2−3.48� − 2 0.125 0.474 F E*�,����*�,����* ,����F +	E
0.046 −0.112 0.133−1.297� − 03 9.243� − 02 −2.366� − 25.87� − 3 −1.054� − 2 8.634� − 2 F E*�,����*�,����* ,����F 

+ E 0.028 0.066 0.1933.560� − 4 5.522� − 2 1.730� − 43.299� − 3 −5.075� − 3 3.008� − 2F E
*�,��� *�,��� * ,��� F + E 0.049 −0.049 −0.041−2.240� − 5 4.467� − 2 −2.829� − 22.152� − 3 −8.246� − 3 3.208� − 2 F E*�,���!*�,���!* ,���!F +	E 0.031 0.101 −1.847−6.271� − 7 6.253� − 2 4.843� − 33.183� − 3 −1.787� − 2 4.14� − 2 F E

*�,���)*�,���)* ,���)F                                                       (8) 

With the residual covariance matrix: 

E86.083 −0.699 0.407−0.699 1.772 0.0970.407 0.097 1.196F  
And the residual correlation matrix 

E 1.000 −0.057 0.040−0.057 1.000 0.0670.040 0.067 1.000F  
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The VAR (5) model had a p-value of < 2.2e-16 for rainfall, 

minimum and maximum temperatures hence statistically 

significant. The model explained 3%, 51% and 38% of the 

variability in rainfall, minimum and maximum temperatures. 

According to the model, the forecast for time t depended a lot 

on the rainfall and temperature values for the first lag, with 

reducing dependencies as the lag increased. 

The model was used to forecast for the same five days as 

used in Table 3. The forecast results are provided in the last 

three columns of Table 5. The observed values were used as 

the five lags used in the model. The model resulted in 

accurate prediction of the temperature values. However, the 

forecast errors were bigger compared to forecast errors when 

the ARIMA (1,0,2) was used (Table 3). 

Table 5. Forecast results using VAR (5) model for daily rainfalland temperature data. 

Date 
Observed Forecasted 

Rainfall Max_T Min_T Rainfall Max_T Min_T 

21-Jun-2014 0.6 26.3 20.3    

22-Jun-2014 0.0 28.5 19.5    

23-Jun-2014 0.0 29.5 18.2    

24-Jun-2014 0.0 29.0 18.3    

35-Jun-2014 0.0 29.5 16.8    

26-Jun-2014 0.0 28.2 17.1 6.285 29.261 17.401 

27-Jun-2014 0.5 30.2 17.5 5.756 28.824 17.127 

28-Jun-2014 0.0 29.3 16.3 5.869 29.850 17.493 

29-Jun-2014 0.0 30.0 18.8 5.582 29.481 16.806 

30-Jun-2014 0.0 28.8 15.6 5.708 29.920 17.934 

 
When the same VAR (5) model was constructed for the 

monthly and seasonal data. The average of the monthly 

minimum and maximum temperatures were used together 

with the total rainfall. The same summaries were used with 

the seasonal VAR (5) model. The lag of five was selected 

arbitrarily to tally with the lags used in the model for daily 

data. Model results showed that the first and second lags of 

the minimum temperatures contributed to the rainfall data 

with statistical significance, and the maximum temperatures 

of the second and fifth. The model explained 23.24% of the 

total variability in the rainfall data, and the forecast was 

closer to the long-term average, rather than the observed 

values for that year. A similar view was noticed for the 

seasonal forecasts. 

Thus, the results showed a divergent behavior for 

univariate and multivariate time series model to the models 

by Jones [15]. Jones used the VAR model to find demands 

for key resources in the emergency department over time. 

However, given the variability in weather, in particular 

rainfall, this makes the VAR models not very suitable for the 

modelling, in comparison to the univariate ARIMA models. 

4. Conclusion 

In this paper, 50-year historical data has been to generate 

ARIMA, SARIMA and VAR models for forecasting rainfall 

values for Kisumu. SARIMA models were fit and forecasted 

monthly and seasonal rainfall totals, while ARIMA and VAR 

models were fit and forecasted the daily rainfall amount. The 

best fit models for the daily, total monthly and total seasonal 

rainfall were ARIMA (1,0,2), ARIMA (1,0,3) (2,0,0) [12] 

and ARIMA (0,0,1) (2,1,0) [4]. The latter two predicted total 

monthly and total seasonal rainfall more accurately. In 

addition, ARIMA (1,0,2) had smaller forecast errors than the 

VAR (5) model which considered the minimum and 

maximum daily temperatures. 
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