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Abstract: In this paper, a three species eco system, involving three pairs is considered modeled to examine the stability. 

Among the three species, one plays dual roles which are a host and an enemy with Monod response. In the first place model 

assumptions and formulation was carried out for investigations. The biological feasibility of the system is checked. That is 

positivity and boundedness of the model is verified. It is shown that biologically valid. The dynamical behavior of the 

proposed model system was analyzed qualitatively. The dynamical analysis includes the determination of all possible 

equilibrium points and their stability properties. All the equilibrium states are identified and the local asymptotic stability of 

some of the equilibrium states is examined by considering the set criteria. It is observed that among the states, the state in 

which the Prey and its Host species are exist is stable and the state where the Predator/Ammensal species is washed out is 

asymptotically stable. The global stability of the co-existence of the species was investigated by constructing a suitable 

Lyapunov function. To support our analytical studies, some numerical simulations was performed susing some mathematical 

software and the results were forwarded in the last section. 
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1. Introduction 

The development of the qualitative analysis of ordinary 

differential equations is deriving to study many problems in 

mathematical biology. 
Ecosystems are the ones in which their living and 

nonliving components interact with and depend on each other 

linking together the exchange of energy, material, 

information. The structure and the function of the ecosystems 

are determined by the interplay of both cooperation and 

competition [21, 22]. Ecosystems are able to regulate 

themselves to maintain certain stability. Therefore, the 

stability is one of the most fundamental and essential features 

of the ecological systems. The study of stability is directed 

relevant to the existence of every species. The stability is 

influenced by many factors, such as the structure within the 

components and the features of the environment. The 

ecosystems are complex and involve many kinds of 

interactions among the elements. The inherent interactions 

are often non-linear and intricate. These systems can be 

described by a set of nonlinear differential equations. These 

nonlinear interactions lead to complex dynamics. There have 

been many investigations on the stability of ecosystems. 

Most of the works have been focused on the local linear 

stability analysis. The studies of the stability of ecosystems 

are significant for uncovering the underlies ecological law of 

species and populations [34]. 

The global stability of the ecological systems is still 

challenging in general. Furthermore, the link between the 

global characterization of the ecological systems and the 

dynamics of the elements is still not clear. The past 

researchers explored the dynamical system with the approach 

of Lyapunov function which was developed to investigate the 

global stability. Here, in recent work we would like to 

suggest a universal and straightforward approach to explore 

the Lyapunov function and therefore the global stability of 

the general ecological systems. 
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In nature, all living species like a suitable environment 

where it can live freely and reproduce. Ecological species 

take various techniques for searching foods and for defensive 

purposes. 

Ecology, basically the study of the inter relationship 

between species and their environment, in such areas as 

predator-prey and competition interactions, renewable 

resources management, evolution of pesticide resistant 

strains ecological and genetically engineered control of pests, 

multi-species societies, plant-herbivore systems and so on is 

now an enormous field. It is the scientific study of the 

interactions between organisms and their environment [23-

25]. 

In the ecosystems, the relationship between species can be 

grouped into two categories: the negative antagonism 

interaction (−) and the positive mutualism interaction. 

Predation shows the relationship (+/−) which one species is 

disfavored, while the other species benefits. Examples in the 

natural world include sharks and fish, lynx and snowshoe 

hares, and ladybirds and aphids. Mutualism shows the 

relationship (+/+) which both species benefit from 

interactions of the other. Stability and dynamics are crucial 

for understanding the structure and the function of 

ecosystems [23, 29-34]. 

In this paper we are interested in ecological systems in 

which the interactions were both positive and negative to 

show the stability of the ecosystem. 

A brief description of a commensalism interaction was 

given by different scholars [26-29, 31-32, 34]. 

Ammensalism is the ecological interaction in which an 

individual species harms another without obtaining benefit. 

This type of symbiotic relationship is common, but not 

considered an important process structuring communities 

because they are “accidental” and do not benefit the species 

doing the harm. It is a 0- relationship. For instance, algal 

blooms can lead to the death of many species of fish and 

other animals, however the algae do not benefit from the 

deaths of these individuals. 

These different theoretical studies was manifested or 

visualized by applying mathematical language and defined 

by varies researcher [4-5, 8-9, 11-17]. 

Dynamics of non-linear systems that occur in ecological 

systems has attracted the attention of mathematicians since 

the days of Lotka [1] and Volterra [2]. Over the years, this 

model has attracted attentions for exploring the dynamical 

process of the ecology. Non-linear dynamic models exhibit a 

wide range of behaviors. The Lotka-Volterra Prey-Predator 

model involves two equations, one which describes how the 

prey population changes and the second which describes how 

the predator population changes would be defined by the 

differential equations as follow; ���� = ����� − 	����
�� 

���
 = �	����
��� − �
���                        (1) 

Where a, b, c and e are all positive constants, with ���� 

and 
���  representing the scaled population of prey and 

predator, respectively, and t is measured in years. 

Moreover; the other models involving Commensal-host 

and ammensalism model were described as shown in 

equation (2) and (3) respectively. 

Commensal-host model: ���� = ����� �1 − ����� � 

���
 = ����� �1 − ��
��� � + ���������         (2) 

Where �, �, � ′, � and � positive constants with are ���� �!� ����  denotes the population of host and 

Commensal respectively. 

Ammensalism model: �"�� = �"��� �1 − "���� � 

�#�
 = �$��� �1 − #�
��� � − %"���$���          (3) 

Where  �, �, �’, � �!� %  are positive constants with "��� and $���  are density of populations where $���  is 

Ammensal. 

Inspired by these model, several researchers made 

significant contributions in this area by considering various 

special types of interactions between the species. This has 

been the motivation for others in bringing a third species into 

the system thus forming a three species ecological system. 

In the present paper, the three species Ecosystem with time 

as continuous unit is considered. The equilibrium states are 

identified and the asymptotic stability of the equilibrium 

states is examined. A few of them are presented here. 

Now, the present investigation is a study of a continuous 

model of “a symbiotic interaction and predation” between 

three species. 

2. Assumptions and Models Equations 

Mathematical modeling and computer simulation provide 

an effective tool in the study of contemporary population 

ecology [18, 19]. In population dynamics, the functional 

response of predator to prey density refers to the change in 

the density of prey attacked per unit time per predator as the 

prey density changes [20]. 

Recently, Koya P. Roa and Geremew K [34] worked on 

three species system by considering interactions like Prey-

Predator, Commensal - Host, and between the three species, 

which motivated the present authors to consider a three 

species Ecosystem with species S1, S2 and S3 

simultaneously having the interactions of Prey-predation, 

commensalism and ammensalism, with continuous time. 

Here, S1 and S2 form a Prey-Predator pair. That is, S2 

depends on S1 for its survival. S1 and S3 form a Commensal 

– Host pair. That is, S3 acts as host to S1 without itself being 

affected. Moreover, the response between S3 and S1 is 

sigmoid functional response not a linear. And S2 and S3 form 

an Ammensal – Enemy pair. That is, S3 inhibits S2 without 

itself being affected, as shown illustrated in figure 1 below. 

In this paper, we describe the three species ecosystem 
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model. To develop this model, the assumptions have been 

made as mentioned 

The three model equations for dN1/dt, dN2/dt and dN3/dt  are constructed using several components, both 

variables and parameters, and each of which represents 

specific biological assumptions. 

The simple schematic interactions among the model 

variable is shown in Figure 1. 

 
Figure 1. A three species ecosystems. 

2.2. The Model Equations 

Based on the above initial models given in system (1) - (3) 

and the assumptions, the interactions of the three species 

stated by the model equations as follows; 

�+,�
 � �-"- � �--".- � � /-0/1+,� "-"2 � �-."-". (4) 

�+3�
 � �.". � �..".. � �.-"-". � �.2"."2  (5) 

�+4�
 � �2"2 � �22".2                      (6) 

with initial conditions "-�0� � "6- 7 0 ".�0� � "6. 7 0 "2�0� � "62 7 0 

Notations and descriptions of parameters 

Notations and descriptions of the state variables and 

parameter are listed in the table 1 below. 

Table 1. Notation and description of the model parameters. 

Notation Descriptions �8 The Natural growth rate of Si, i=1, 2, 3; the difference of 

birth and death rate. �88 Self inhibition coefficient of Si, i=1, 2, 3. (The rate of 
decrease of Ni due to insufficient natural resources of Si) �-. The rate of decrease of S1 due to inhibition by S2 $ 
The functional response of the S1 to its host S3; A �/-0/1+, �.- The rate of increase of the S2 due to its attacks on S1 �.2 
The rate of decrease of the S2 due to the harm caused by 

its enemy S3 �-./�-- Coefficient of prey/commensal inhibition of the predator $/�11 Coefficient of commensalism �21/�22 Coefficient of predator consumption of the prey �23�22 Coefficient of Ammensalism 

The model variables ": ��� the density of population Si, 

i=1, 2, 3 at any instant of time t subject to the non-negative 

initial conditions ":�0� � "6 7 0. 
Moreover, the notation A in the model indicates the 

Functional response with Holling type II response, i.e.,$ �/-0/1+,, where a is helping rate, h-handling rate. 

3. Dynamical Properties of the Model 

System 

Since the state variables "-, ". and "2 represent 

population sizes, positivity implies that the population sizes 

never become negative. The boundedness of the system is 

interpreted as a natural restriction to the growth of 

populations as consequences of limited resources. 

Positivity and boundedness of the solution of the system 

In this section, some basic dynamical properties of the 

system are discussed subjected to positive initial conditions. 

Positivity of the solution 

Here the positivity of each population size such as "-���, ".���  and "2���  is verified. These system variables must 

have the positive values in order to be biologically 

meaningful. The positivity of these biological or system 

variables is tested and the results are presented in the form of 

proposition as follows: 

Proposition 1 Every solution of system (4-6) together with 

the positive initial conditions exists in the interval [0,∞� and 

they are non-negative. That is, "-���, ". ��� and "2 (� )= 0) 

for all � ≥ 0. 

Proof 

For � > ?0, @A, as the system (4) is continuous, then the 

solution  "-���, ". ���  and "2  (�  of the system with given 

initial conditions exists and unique on [0,@] where 0 B @ B�∞. 
a) Positivity of "-���, ". ��� and "2 �t� 

Verifying the positivity of "-���: The density of the first 

population of the system (2.1) is solved analytically and its 

solution is obtained as: 

"-��� � "6-�CD E F�- � �--"-��� � �"2���1 � �G"- � �-.".HI
6 �� 

The exponential function is always non-negative and the 

initial population "-��� is assumed to be positive. Therefore, "-���> 0 for all t ≥ 0. 
Verifying the positivity of ".��� : The density of the 

second population of the system (5) is solved analytically and 

its solution is obtained as follow: 

".��� � "6. J�CD E��. � �..".�K� � �.-"-�K�I
6

� �.2"2�K��L �K 

The exponential function is always non-negative and the 
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initial population "6.  is assumed to be positive. Therefore, ".��� > 0 for all t ≥ 0. 

Verifying the positivity of "2�t�: The density of the third 

population of the system (6) is solved analytically and its 

solution is obtained as: 
"2��� = "62 F�CD E��2 − �22"2�H �� 

The exponential function is always non-negative and the 

initial population "62  is assumed to be positive. Therefore, "2��� > 0 for allI ≥ 0. Hence, all the solutions of the system 

(4-6) are positive for all t ≥ 0 under the considered positive 

initial conditions. 

b) Boundedness of "-���, ". ��� and "2 �t� 

In this section, all the solutions of system (4), (5) and (6) 

are shown to be bounded. The boundedness of the system is 

presented in the form of a proposition as follows: 

Proposition 2: All solutions of the system (4), (5) and (6) 

with positive initial conditions are bounded. 

Proof: Boundedness of the third population: To show that 

the population is bounded it is appropriate to start with the 

third equation from the model system. 

Thus, �"2�� = �2"2 − �22".2 

Using partial fractions and performing of some simple 

algebraic manipulations reduces the equation to 

F �221 − �22"2 + 1�2"2H "2 = �� 

Application of integration reduces it to: MN% � /4+4-O/44+4� =� + MN%� 

Here the quantity is an arbitrarily integral constant and 

must be positive. Applications of anti-logarithm lead to: � /4+4-O/44+4� = ��
 

Equivalently; "2��2 + �22��
� = ��
 "2 = �PQ/40/44�PQ, this implies that "2 = �/4PRQ0/44�. 

Now �O
 → 0 as t → ∞. Thus, the system for "2takes the 

form as: "2 = -/44 ≤ �22 

Therefore the third population "2 is bounded above by 

inverse of its self inhibition coefficient. That is the host 

population is bounded above by its carrying capacity. 

Boundedness of the first population: To show that the first 

population is bounded it is appropriate to start with the 

equation (4) from the model system. �"-�� = �-"- − �--".- + �"-"21 + �ℎ"- − �-."-". 

It is true that the term ��-."-".� and ��--".-�  are 

positive since each member of it is a positive quantity. Thus, 

without loss of generality �"-�� ≤ �-"- + �"-"21 + �ℎ"- 

T -+,U �+,�
 ≤ �- + /,+4-0/1+, ≤ �- + //44-0/1+, ≤ /441 , since 
--0/1+, ≤ 1 

Thus, the inequality can be re-expressed as; 

V 1"-W �"-�� ≤ �- + �22ℎ  

On applying integration, it can be obtained that 

log "- ≤ ��- + �22ℎ � � + MN%[ 

This is equivalent to "- ≤ [��/,0\44] �

 

Here the quantity m is an arbitrarily integral constant and 

must be strictly positive due to logarithmic function. Now 

there arise three cases, namely the exponent may be negative 

or positive or zero. These cases as analyzed as follows: 

i. If ��- + /441 � < 0 then as t → ∞ the exponential term 

takes a value zero and thus to get  "-  ≤ 0. But this, 

having negative population, is biologically not feasible. 

Hence this possibility is not considered. 

ii. If ��- + /441 � > 0 then as t → ∞ the exponential term 

takes a value ∞ and thus to get  "-  ≤ ∞. But this, 

having ∞ population, is biologically not feasible. It is 

an unbounded case. Hence this possibility is not 

considered. 

iii. If��- + /441 �=0 then as t → ∞ the exponential term 

takes a value 1 and thus reduces to  "- ≤ m. Hence this 

possibility is considered. Thus the population  "-  is 

bounded above by arbitrarily positive constant m. In 

other word the death rate more prominent than the 

other parameters that is why this possibility is happen. 

Boundedness of the second population: To show that the 

population is bounded it is appropriate to start with the 

equation (5) from the model system. 

Thus, �".�� = �.". − �..".. + �.-"-". − �.2"."2 

�".�� = ".?�. − �..". + �.-"- − �.2"2A 
It has been already shown that the population sizes of the 

two populations are bounded. That is, "2 ≤ �22and  "- ≤ m. 

Here it can be observed that  �.-"-  ≤  �.-[  and  �.2"2 ≤�.2�22. 

In view of these observations the equation takes the form 

as: �".�� ≤ ".?�. − �..". + �.-[ − �.2�22A 
�+3�
 ≤ ".?! − �..".A. Here ! = ?�. + �.-[ − �.2�22A. 

Applying partial fraction and integrating: 

M! F ".! − �..".H ≤ !� + M!D 
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Here the quantity p is an arbitrarily integral constant and 

must be strictly positive due to logarithmic function. 

F ".! � �..".H ≤ D�^
 

". ≤ D!�^
1 + �..D�^
 

". ≤ D!�O^
 + �..D 

It can be observed that �O^
 → 0 as t → ∞ and thus ". ≤ /̂33 

That is, the second population is bounded above by ". ≤ ?/30/3,_O/34/44A/33 . 

Therefore, the solution of the model system (4-6) is 

bounded. 

4. The Steady States 

The critical points of the system can be obtained by 

setting +8�
�
 = 0, i=1, 2, 3. in the model equations. This leads 

to the following optional relations; "- = 0                                         (7) 

Or, F�- − �--"- + �1+�ℎ"1 "2 − �-.".H = 0   (8) 

". = 0                                          (9) 

Or, ?�. − �..". + �.-"- − �.2"2A = 0    (10) "2 = 0                                        (11) 

Or, ?�2 − �22"2A = 0                            (12) 

The solutions of these optional relations can be the 

equilibrium points. There are eight possible combinations of 

the relations. These combinations and their solutions or 

equilibrium points are as mentioned below: 

Table 2. Possible combinations of the solution of the systems. 
Combination of relations Equilibrium points 

(2.4) (2.6) (2.8) `6 
(2.4) (2.6) (2.9) -̀ 
(2.4) (2.7) (2.8) `. 
(2.5) (2.6) (2.8) `2 
(2.4) (2.7) (2.9) `a 
(2.5) (2.6) (2.9) `b 
(2.5) (2.7) (2.8) `c 
(2.5) (2.7) (2.9) `d 
(2.4) (2.5) (2.9) Not biologically feasible 

It can be observed that the first two combinations lead to 

the same equilibrium point while the last combination leads 

to biologically infeasible solution. Thus, eight equilibrium 

points are possible. Now the coordinates of these possible 

equilibrium points as given below: 

(1) Fully washed out state: `6 (0, 0, 0), i.e., N1=0, N 2=0, 

N3=0. The extinction of all populations equilibrium 

(`6) always exists. 

(2) States in which two species are washed 

out: -̀ T0, 0, m4m44U , `. T0, m3m33 , 0U , `2 T m,m,, , 0, 0U 

(3) States in which one species is washed 

out: `a T0, N.∗ , m4m44U , `b TN-∗, 0, m4m44U , `c�N-∗∗, N.∗∗, 0� 

Where N-∗ = Oo0po3Oaq. , � = /,m33m44 − -/1 ; s = /,0/4/m33m44mt ; N-∗∗ = m,m33Om3m,3m,,m330m,3m3,; 

N.∗ = /3m33 − /4m34m33m44  when �.a22 > �2a.2;  N.∗∗ = /,m,3 −/,,m,3 � m,m33Om3m,3m,,m330m,3m3,�. 
(4) States in which the three species 

exists: `d�N-∗∗∗, N.∗∗∗, N2∗∗∗ �, where 

N-∗∗∗ = −P − pP. − 4QS2Q ;  Q = − Fa--ah + a.-a-.aha.. H, 
P = a-ah + m4m,3m34mtm33m44 − �m33m,,0m,3m3mt0m3,m,3m33 �, 

y = a- + m4mm44 − m,3m3m33 + m4m34m,3m33m44 . 

N.∗∗∗ = m3m33 + m3,m33 N-∗∗∗ − m4m34m33m44; 

N2∗∗∗ = m4m44. 

5. Stability Analysis of the Equilibrium 

States 

To analyze the stability near the equilibrium points the 

community matrix called Jacobian matrix is and the 

conditions for stability of the equilibrium state are 

determined and stated as follows. 

Community matrix 

Let 
�+,�
 = ℎ ("-, "., "2), 

�+3�
 = z ("-, "., "2), and �+4�
 = % 

("-, "., "2). 

Where the functions are given as; ℎ = �-"- − �--".- +/-0/1+, "-"2 − �-."-"., z = �.". − �..".. + �.-"-". − �.2"."2 and  % =�2"2 − �22".2. 

Moreover, the components of the Jacobian matrix are 

given by; 
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{ �
|}}
}}}
~ �G�"-

�G�".
�G�"2�z�"-

�z�".
�z�"2�%�"-

�%�".
�%�"2���

���
�
 

Therefore, the Jacobian matrix takes the components as; 

{ � ��- � 2�--"- + /+4�-0/1+,�3 − �-.". −�-."- /+,-0/1+,�.-". �. − 2�..". + �.-"- − �.2"2 −�.2".0 0 �2 − 2�22"2
�                          (13) 

Analysis of the equilibrium points 

5.1. Local Stability of the Steady State 

In this section, the stability of the model (2.1), (2.2) and 

(2.3) at the equilibrium point is analyzed. The local stability 

of the steady state is determined based on the nature of the 

eigenvalues of the variation matrix. 

Theorem 1: The trivial equilibrium point `6  (0, 0, 0) is 

unstable. 

Proof: The eigenvalues of the variation matrix �J6 ) at `6 are given by; �����J6 − ��� = 0 . Hence, �- = �-, �. = �., �2 = �2 . 

Since  �-, �., �2 > 0 . Thus, the washed out state `6  is 

unstable. 

Theorem 2: States in which two species are washed out 

are unstable, i.e, -̀,  `.and `2. 
Proof: The characteristic equations at -̀ is; 

F�- + ��2�22 − �H F�. − �.2�2�22 − �H ?−�2 − �A = 0 

The eigenvalues of this equation becomes;  �- = �- +//4/44 , �. = �. − /34/4/44 , �2 = −�2. 

Since �- > 0  unconditional positive. Hence, the steady 

state -̀ is unstable. 

The characteristic equations at `. is solved as; 
F� − �-.�.�.. − �H ?−�. − �A?�2 − �A = 0 

The eigenvalues of this equation becomes;  �- = � −/,3/3/33 , �. = −�., �2 = �2. 

Since  �2 > 0  unconditional positive. Hence, the steady 

state `. is unstable. 

The characteristic equations at `. is solved as; 
?−�- − �A F�. + �.-�-�-- − �H ?�2 − �A = 0 

The eigenvalues of this equation becomes; �- = −�-, �. =�. + /3,/,/,, , �2 = �2. 

As �2 > 0 unconditional positive. Hence, the equilibrium 

point `2 is unstable. 

Therefore, the states in which the two species washed out 

are unstable. 

Theorem 3: States in which one species is washed out. 

i. The steady states `a, `b are stable under the following 

conditions. 

That is `a  is stable when [ < ! , where [ = �- +�..�22 + ��2�.. + �-.�2�.2, ! = �-.�.�22  and �2�.2 < �.�22 a nd `b  is stable 

when �- < 2�--N-∗ + T//4m44 U F -�-0/1�,∗ �3H  and �. + �.-N-∗ <
/4m34m44 , where N-∗ = T ,��O �,�33�44U0�T�33�44R���,���33�44 U3OaT �,���4���33�44U

.  

Proof: The Jacobian matrix (2.10) is evaluated at `a with 

the following eigenvalues: 

{ = ��- + ��2�22 − �-.N.∗ 0 0�.-N.∗ �. − 2�..N.∗ − �.2N2∗ −�.2N.∗0 0 �2 − 2�22N2∗
� 

The eigenvalues of  {�`a�  are obtained by solving the 

characteristic equation; 

��- + //4/44 − �-.N.∗ − λ� ?�. − 2�..N.∗ − �.2N2∗ − λA?�2 −2�22N2∗ − λA = 0, where, N.∗ = /3m33 − /4m34m33m44 , N2∗ = m4m44. 

Thus the eigenvalues are �- = _O^/33m4 ,  �. = /4m34m44 −�., �2 = −�2 

Here, �2 < 0 , conditional negative but �- < 0  when [ < ! and  �. < 0 when �2�.2 < �.�22. 

Therefore, `a  is stable under the set criteria, otherwise 

unstable. 

Similarly, we can show `b as follows; 

The evaluation of Jacobian matrix (2.10) at `b gives 
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{�`b� � �
��- � 2�--N-∗ + �N2∗�1 + �ℎN-∗�. −�-.N-∗ �N-∗1 + �ℎN-∗0 �. + �.-N-∗ − �.2N2∗ 00 0 �2 − 2�22N2∗�� 

The characteristics equation of {�`b�  is given by the 

following equation: 

��- − 2�--N-∗ + �N2∗�1 + �ℎN-∗�. − �� 

?�. + �.-N-∗ − �.2N2∗ − λA?�2 − 2�22N2∗ − λA = 0 

This gives, �- = �1 − 2�11N-∗ + ��4∗�1+�ℎ�,∗ �2 ,  �. = �2 +�21N-∗ − �23N2∗ , �2 = �3 − 2�33N2∗ . 

Where  N-∗ = T ,��O �,�33�44U0�T�33�44R���,���33�44 U3OaT �,���4���33�44U
. ; N2∗ = m4m44. 

Here,  �2 < 0 conditional negative and  �. < 0  when �. + �.-N-∗ < /4m34m44  but �- < 0  when the following 

conditions are carefully holds. That is,  �- < 2�--N-∗ +/�4∗�-0/1�,∗ �3 since N-∗ is positive quantity. 

Hence, `b  is locally stable under the set conditions, 

otherwise unstable. 

ii. The steady state `c is unstable. 

Proof: The evaluation of Jacobian matrix (2.10) at `c gives 

{�`c� = ��
�- − 2�--N-∗∗ − �-.N.∗∗ −�-.N-∗ �N-∗∗1 + �ℎN-∗∗�.-N.∗∗ �. − 2�..N.∗∗ + �.-N-∗∗ −�.2N.∗∗0 0 �2 �� 

The characteristics equation of {�`c�  is given by the 

following equation: 

?�- − 2�--N-∗∗ − �-.N.∗∗ − �A?�. − 2�..N.∗∗ + �.-N-∗∗ − λA ?�2 − λA + ?�-.N-∗A?�.-N.∗∗A?�2 − λA = 0 

This gives, ?�- − 2�--N-∗∗ − �-.N.∗∗ − �A?�. − 2�..N.∗∗ + �.-N-∗∗ − λA +?�-.N-∗A?�.-N.∗∗A = 0, ?�2 − λA = 0 

Here, �2 > 0 K! conditional positive. Thus `c is unstable 

whatever the case is. 

Theorem 4: States in which the three species 

exists: `d�N-∗∗∗, N.∗∗∗, N2∗∗∗ �, is where 

N-∗∗∗ = −P − pP. − 4QS2Q ;  Q = − Fa--ah + a.-a-.aha.. H, 
P = a-ah + m4m,3m34mtm33m44 − �m33m,,0m,3m3mt0m3,m,3m33 �, 

y = a1 + a3aa33 − a12a2a22 + a3a23a12a22a33 . 

N.∗∗∗ = m3m33 + m3,m33 N-∗∗∗ − m4m34m33m44; 

N2∗∗∗ = m4m44. 

The Jacobian matrix at an equilibrium point `d =�N-∗∗∗, N.∗∗∗, N2∗∗∗ � is given by; 

{ = �
��- − 2�--N-∗∗∗ + �N2∗∗∗�1 + �ℎN-∗∗∗�. − �-.N.∗∗∗ −�-.N-∗∗∗ �N-∗∗∗1 + �ℎN-∗∗∗�.-N.∗∗∗ �. − 2�..N.∗∗∗ + �.-N-∗∗∗ − �.2N2∗∗∗ −�.2N.∗∗∗0 0 �2 − 2�22N2∗∗∗�

� 

The characteristics equation of {�`d�  is given by the 

following quadratic equation 

F�- − 2�--N-∗∗∗ + �N2∗∗∗�1 + �ℎN-∗∗∗�. − �-.N.∗∗∗ − λH 

?�. − 2�..N.∗∗∗ + �.-N-∗∗∗ − �.2N2∗∗∗ − λA?�2 − 2�22N2∗∗∗− λA+ ��-.N-∗∗∗���.-N.∗∗∗���2 − 2�22N2∗∗∗ − λ�= 0 

This implies, 

F�- − 2�--N-∗∗∗ + /�4∗∗∗
�-0/1�,∗∗∗�3 − �-.N.∗∗∗ − λH ?�. −2�..N.∗∗∗ + �.-N-∗∗∗ − �.2N2∗∗∗ − λA?�2 − 2�22N2∗∗∗ − λA +��-.N-∗∗∗���.-N.∗∗∗� = 0; ��2 − 2�22N2∗∗∗ − λ� = 0 

��. + �$ + ��� + � = 0 

Where $ = 2�--N-∗∗∗ − /�4∗∗∗
�-0/1�,∗∗∗�3 + �-.N.∗∗∗ − �-, � =2�..N.∗∗∗ − �.-N-∗∗∗ + �.2N2∗∗∗−�., � = $� + ��-.N-∗∗∗���.-N.∗∗∗� 

From the Routh-Hurwitz criterion, we can conclude that � = 1 > 0, �$ + �� > 0 N� � > 0 

Hence,`d is locally asymptotically stable. 

5.2. Global Stability of Steady State 

The main goal of this model formulation is targeted to 

eradicate the enemy. Mathematically, this can be achieved 

whenever the second species free equilibrium is stable. The 

sufficient condition for this equilibrium to be globally 
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asymptotically stable is given by the following theorem. 
Theorem 5: If �. � �.-N-n B /4m34m44  and �- B 2�--N-n �
T//4/44U V -�-0/1�,n �3W the steady states `b is globally 

asymptotically stable. 

Proof: Consider the Lyapunov function derived from the 

integral form; 

E K � CnK �K�
�n  

Now, let ��"-, "., "2� � "- � N-n � N-nln +,�,n �M T"2 � N2n � N2nln +4�4n U,  where l is some positive constant 

assumed. 

Now, the differential of �  with respect to t and after some 

algebraic manipulations reduces to the following form: 

�� �"-, "., "2� � F"- � N-n"- H V�"-�� W � M F"2 � N2n"2 H V�"2�� W 

� F"- � N-n"- H F�-"- � �--".- � �1 � �G"- "-"2 � �-."-".H
� M F"2 � N2n"2 H ?�2"2 � �22".2A 

� ?"- � N-nA F�- � �--"- � �"21 � �G"-H� M?"2 � N2nA?�2 � �22"2A 
� �?"- � N-nA. V �-�-- � �W � �M?"2 � N2nA. F �2�22H 

� � F�"- � N-n�. V �-�-- � �W � M?"2 � N2nA. V �2�22WH 
Choosing, M � /44/4  and letting � � /+4-0/1+,  for the sake  of 

simplicity. 

Thus, 
� �
 B 0 , i.e., �  is positive definite and also �� �N-n, N.n , N2n� � 0. Therefore `b  is globally asymptotically 

stable.  

6. Numerical Simulations and Discussion. 

To illustrate the dynamical behavior of system (2.1), (2.2), 

and (2.3), we perform some numerical simulations using 

hypothetical value of parameters. 

The parameters and its values used in this study are 

mentioned in the following table as follow 

Table 3. Parameters and their estimated values for figures (2-6). 

Figures 
Estimated Parameters and their values Remark ¡¢ ¡¢¢ ¡ £ ¡¢¤ ¡¤ ¡¤¤ ¡¤¢ ¡¤¥ ¡¥ ¡¥¥  

6.1 0.0000 0.0390 0.0000 0.0000 0.9740 0.0000 0.1430 0.0100 0.6010 0.0260 0.9740 [16] 

6.2 0.1000 0.0710 0.3000 0.9000 0.0100 0.6620 0.1170 0.0900 0.4640 0.9350 0.0650 Assumed 

6.3 0.0420 0.2790 0.1200 0.5100 0.8770 0.7110 0.5580 0.9450 0.0840 0.4610 0.2180 Assumed 

6.4 0.9350 0.2790 0.1200 0.5100 0.8770 0.9220 0.9320 0.9450 0.9220 0.9680 0.9680 Assumed 

6.5 0.3250 0.0260 0.3150 0.1690 0.4970 0.1200 0.0780 0.9610 0.9610 0.9450 0.1790 Assumed 

 

Figure 2. The dynamic behavior of the system with different initial condition and the three species washed out. 
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Figure 3. The dynamic behavior of the system with different initial condition and the second species washed out while the first and the third species exist. 

 

Figure 4. The dynamic behavior of the system with different initial condition and the second and the third species exists while the first species washed out. 

 

Figure 5. The dynamic behavior of the system with different initial condition and the three species exists. 
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Figure 6. The dynamic behavior of the system with initial condition varying and certain disturbance between the species and living together after certain time 

t. 

7. Conclusion and Future Extension 

In this paper a three species ecosystem with various 

interactions between the species is considered for 

investigation. The biological feasible of the system was 

shown using different mathematical tools, like positivity and 

boundedness. The equilibrium points are examined. The 

stability of some the steady states were investigated. 

It is observed that among the states, the state in which the 

first species and the second species washed out (extinct), is 

asymptotically stable as shown in figure 3 and figure 4. From 

this it can be understood that in the former case, though the 

first and second species are extinct, the third species survives 

due to non inhibition by its enemy and the response taken 

between the species. While in the later case, the species 

continue to exist together because the response taken 

between the first species and the third species with Monod 

functional response force them for its survival. The results 

are illustrated in figures 5 and 6. 

In another word we try to incorporate the Monod type 

response term for the first species of the system given in the 

model, this seems more interesting and necessary, since more 

and more species become endangered due to the over 

exploitation by humans or environmental change. It is shown 

in figures 3 - 6 that the commensalism of the second species 

to the first species could avoid the extinction of the species. 

Moreover, if the cooperative intensity is large enough, then 

the two species could really coexist in a stable state in which 

the third species could avoid the decline of the other species. 

However, if the effect of the response of the third species is 

limited, it has been shown that, the first species still be driven 

to extinction. In addition to this there is a dispensation or 

allee effect of the third species, because of over exploitation. 

These models can be further extended by other type of 

response functions and selective harvesting by combined 

harvesting and also constant rate of harvesting by variable 

rate of harvesting. This is our further investigation. 
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