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Abstract: This paper presents infectious disease in prey-predator system. In the present work, a three Compartment 

mathematical eco-epidemiology model consisting of susceptible prey- infected prey and predator are formulated and analyzed. 

The positivity, boundedness, and existence of the solution of the model are proved. Equilibrium points of the models are 

identified. Local stability analysis of Trivial, Axial, Predator-free, and Disease-free Equilibrium points are done with the 

concept of Jacobian matrix and Routh Hourwith Criterion. Global Stability analysis of endemic equilibrium point of the model 

has been proved by defining appropriate Liapunove function. The basic reproduction number in this eco-epidemiological 

model obtained to be Ro=[β (µ3)
2
] ⁄ [qp2 (qp1Λ - µ1µ3)]. If the basic reproduction number Ro > 1, then the disease is endemic 

and will persist in the prey species. If the basic reproduction number Ro=1, then the disease is stable, and if basic reproduction 

number Ro < 1, then the disease is dies out from the prey species. Lastly, Numerical simulations are presented with the help of 

DEDiscover software to clarify analytical results. 

Keywords: Mathematical Ecoepidemiology, Prey- Predator System, Stability Analysis, Reproduction Number, 

Simulation Study 

 

1. Introduction 

Mathematical Ecology and Mathematical epidemiology 

are two major fields in the study of biology and applied 

mathematics. However, as time goes these two fields are 

more and more closer, and a new cross field which is called 

Mathematical eco-epidemiology emerges [1-7]. In recent 

years, Mathematical eco-epidemiology problem has got more 

attention to many scholars and experts [2, 7]. 

Anderson R and May R. [6, 7, 10] were the first to propose 

an eco-epidemiological model by merging the Lotka–volterra 

prey–predator model [2, 7, 10] and the epidemiological SIR 

model which was introduced by Kermack and Mckendrick. 

[2, 7, 12-14]. Many works have been devoted to study 

infectious disease on a prey-predator system [1-10]. Most 

models for the transmission of infectious diseases originated 

from the classic work of Kermack-McKendrick. In the last 

few decades, mathematical models have become extremely 

important tools in understanding and analyzing the spread 

and control of infectious disease [8, 9]. 

Ecological populations suffer from various diseases. These 

diseases often play an important roles in regulating the 

population sizes [1, 5, 10, 12, 13]. Mathematical study of 

such populations has attracted attentions of both ecologists 

and mathematicians from several years past. As a result 

numerous mathematical models have been developed, and 

these models have become essential tools in analyzing the 

interaction of different populations, particularly the 

interaction between prey and predator [10, 12, 15, 17]. 

For predator–prey ecosystems, infectious diseases coupled 

with predator–prey interaction to produce a complex 

combined effect as regulators of predator and prey population 

sizes [1-5, 10, 12, 18]. Infectious Disease transmission and 

interaction of species in a certain ecological environment 

can't be neglected, it is very crucial to observe the dynamics 

of ecological interaction of species with infectious disease. 

Disease may spread among prey and predator species, so it 

vital to study a prey-predator system in particular with 

infection in prey population. 

In this study, the effect of disease in ecological system is 
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an important issue from a mathematical as well as an 

ecological point of view. So A Mathematical eco-

epidemiological model is constructed by Considering well 

known model Lotka–Volterra Predator–Prey model from 

mathematical ecology and Kermack-McKendrick model 

from mathematical epidemiology. More detailed assumptions 

and descriptions can be seen in the next section. 

This paper is organized as follows. In Section 2, an eco-

epidemiological model with disease in prey species are 

formulated and some primarily results are discussed 

(positivity, boundedness, and existence of solution of the 

model). In Section 3, Main results and Discussion: all 

possible equilibrium points of the model is investigated. 

Local stability of equilibrium points are done using Next 

generation matrix and Routh Hourwith criterion. Global 

stability analysis is performed by taking appropriate 

liapunove function. In Section 4, Numerical simulations are 

done to clarify theoretical results. Finally brief conclusions 

are given in Section 5. 

2. Model Formulation and Assumptions 

Let �(�) be the total population density of the prey species 

and �(�) be the population density of the predator species. 

Now, to formulate mathematical eco-epidemiological model, 

the following assumptions are drawn: 

i. The total prey �(�)  is composed of two classes: 

susceptible prey (�)  and infective prey (�) , the total 

population of the prey species �(�) = �(�) +  �(�). 

ii. The disease spreads among the prey population only by 

contact, and can't be transmitted vertically. The infected 

prey species do not recover or become immune. The 

incidence of the disease in the prey is bilinear incidence 

form ���. 
iii. The predation functional response of the predator 

towards susceptible prey as well as infected prey are 

assumed to follow Simple bilinear functional form with p�, p�, be respective predation coefficients and 

Consumed prey is converted into predator with 

efficiency �. 

iv. The susceptible prey and the infected prey are both 

captured by predators. susceptible prey are more 

stronger than infected prey. Therefore, the probability 

of predation of the infected prey is more than that of 

susceptible prey. That is �� > ��. 
v. Suppose that susceptible prey, infected prey and 

predator have different mortality rates. ��, ��, �� respectively. Furthermore infected prey Suffer 

from death rate due to infection �. 

vi. All parameters are assumed to be positive constants. 

Table 1. Notation and Description of Model Variables. 

Variables Descriptions S(t) Population size ofthe susceptible preyat time� I(t) Population size ofthe infective prey at time � P (t) Population size of the predator at time � 

 

Table 2. Notations and Description of model parameters. 

Parameter Description of parameter Λ The constant recruitment rate of susceptible prey � The disease transmission coefficient p� Capture rate of the susceptible prey p� Capture rate of the infected prey � Conversion coefficient from the prey to the predator �� The death rate of the susceptible prey �� The death rate of the infected prey �� The death rate of the predator 

According to the above assumptions, the description of 

variables and parameters the present model will have the 

flow diagram given in Figure 1. 

 

Figure 1. Model Diagram. 

The model flow diagram shown in Figure 1 leads to the 

following system of three ordinary differential equations. 

�� ��⁄ = Λ − ��� − ���� − ���               (1) 

�� ��⁄ = ��� − ���� − ��� − ��               (2) 

�� ��⁄ = ����� + ����� − ���               (3) 

with initial conditions �(0) ≥ 0, �(0) ≥ 0, �(0) ≥ 0 

In this section, it is shown the basic properties which are 

necessary for understanding of subsequent results. So the 

following lemmas are stated as primarily results. 

Lemma 1 [Positivity] All solution of the model (1)-(3) 

with initial conditions are positive for all time � 

Proof: Positivity of the model variables is shown 

separately for each of the model variables�(�), �(�), and"(�). 

Positivity of �(�): 

The model equation (1) given by �� ��⁄ = Λ − ��� −���� − ��� can be expressed without loss of generality, after 

eliminating the positive terms (Λ) which are appearing on 

the right hand side, as an inequality as �� ��⁄ ≥−(�� + ��� + ��)�.  Using variables separable method and 

on applying integration, the solution of the foregoing 

differentially inequality can be obtained as �(�) ≥#$(%&'()*'+)),. Recall that an exponential function is always 

non–negative irrespective of the sign of the exponent, Hence, 

it can be concluded that�(�) ≥ 0. 

Positivity of �(�): 

 

�1�� 

S(t)

) 

P(t) 

I(t) 

�(�1��) �(�2��) 

�2�� �1� 

��� Λ 

�2� 

�3� 

�� 



 Mathematical Modelling and Applications 2020; 5(3): 183-190 185 

 

The model equation (2) arranged �� ��⁄ = ��� − ���� −��� − ��can be expressed without loss of generality, after 

eliminating the positive term (���) which are appearing on 

the right hand side, as an inequality as�� ��⁄ ≥ −(��� +�� + �)�. Using variables separable method and on applying 

integration, the solution of the foregoing differentially 

inequality can be obtained as�(�) ≥ #$((0*'+0'1), . Recall 

that an exponential function is always non–negative 

irrespective of the sign of the exponent. Hence, it can be 

concluded that�(�) ≥ 0. 

Positivity of �(�): 

The model equation (3) arranged �� ��⁄ = ����� +����� − ���  can be expressed without loss of generality, 

after eliminating the positive term (����� + �����) which 

are appearing on the right hand side, as an inequality as �� ��⁄ ≥ −(��)�. Using variables separable method and on 

applying integration, the solution of the foregoing 

differentially inequality can be obtained as �(�) ≥ #$(+2), . 

Recall that an exponential function is always non–negative 

irrespective of the sign of the exponent. Hence, it can be 

concluded that �(�) ≥ 0. 

Lemma 2 [Boundedness] All feasible regions Ωdefined by Ω = 4(�(�), �(�), �(�)) ∈ ℝ'� : �(�) + �(�) + �(�) ≤Λ 9⁄ = :; where 9 = <=>4�� �� ��; with initial 

conditions �(�) ≥ 0, �(�) ≥ 0, �(�) ≥ 0 is positively 

invariant for the model (1)-(3) 

Proof: Define a function :(�) = � (�) + �(�) + �(�), we 

have that �: ��⁄ = ?�� ��⁄ @ + ?�� ��⁄ @ + ?�� ��⁄ @ 
�:�� = ?Λ − ��� − ���� − ���@ + ?��� − ���� − ���@ 

+?����� + ����� − ���@ ≤ Λ + ����� + ����� 

?�: ��⁄ @ + 9: = Λ + (9 − ��� − ��)� + (9 − ��� − ��)�+ ?9 − �� + (��� + ���)�@� 

?�: ��⁄ @ + 9: ≤ Λ The solution ofsuch ode is given by :(�) ≤ ?Λ 9⁄ @ + A exp (−9�)  limit of N (t) as t tends to +∞ is Λ 9⁄ hence 0 ≤ :(�) ≤ Λ 9⁄ . 

Then Ω = 4(�(�), �(�), �(�)) ∈ ℝ'� : �(�) + �(�) + �(�) ≤Λ 9⁄ = :; is a positive invariant set of system. 

Lemma 3 [existence of the solutions] Solutions of the 

model equations (1) – (3) together with the initial 

conditions�(0) > 0, �(0) ≥ 0, �(0) ≥ 0  exist inℝ'�  i.e., the 

model variables �(�), �(�) and �(�)  exist for all � and will 

remain inℝ'� . 

Proof: Let the system of equation (1) – (3) arranged as 

follows:  

E� = Λ − ��� − ���� − ��� 

 E� = ��� − ���� − ��� − �� 

E� = ����� + ����� − �� 

According to Derrick and Grossman theorem, let Ωdenote 

the region Ω = 4(�, �, �) ∈ ℝ'� ;  N ≤ (Λ μ⁄ ); . Then 

equations (1) – (3) have a unique solution if (JEK) LJMNO⁄ , =, P = 1, 2, 3 are continuous and bounded inΩ. 

Here, M� = �, M� = �, M� = � , The continuity and the 

boundedness are shown as follows: 

For E�: 

|(JE�) (J�)⁄ | = |−βI − p�P − μ�| < ∞ 

|(JE�) (J�)⁄ | = |−βS| < ∞ 

|(JE�) (J�)⁄ | = |−p�S| < ∞ 

For E�: 

|(JE�) (J�)⁄ | = |βI| < ∞ 

|(JE�) (J�)⁄ | = |βS − p�P − μ� − δ| < ∞ 

|(JE�) (J�)⁄ | = |−p�I| < ∞ 

For E�: 

|(JE�) (J�)⁄ | = |qp�P| < ∞, 

|(JE�) (J�)⁄ | = |qp�P| < ∞, 

|(JE�) (J�)⁄ | = |qp�S + qp�I − μ�| < ∞ 

3. Main Results and Discussion 

3.1. Equilibrium Points 

In this section, the existence of equilibrium points and 

their stability Analysis will be discussed. Model Equations (1) 

- (3) have the following Equilibrium points: (i) Trivial 

equilibrium point VW(0, 0, 0), (ii) Axial equilibrium point V�(�, 0, 0) = (Λ ��⁄ , 0, 0) , (iii) Predator-free 

/predator extinction equilibrium point. 

V�(�, �, 0) = (�� �⁄ , ?�Λ − ����@ ?���@,⁄ 0), 

(iv) Disease-free equilibrium point V�(�X 0 �X) =(�� ���,⁄ 0, ?���Λ − ����@ ?����@⁄ ) , (v) positive 

/endemic equilibrium point VY(�∗, �∗, �∗). 

3.2. Basic Reproduction Number 

The Next generation matrix method [5, 18] is used to 

calculate the basic reproduction number "W [5]. it is Clearly,� 

is the only relevant class of infection. The class�(�) from our 

model (2) can be expressed as follows. �� ��⁄ = ��� − ���� − ��� − �� = 4�� − (��� + �� +�;�. Therefore, two matrices F and V corresponding to the 

gain and loss components of equation (2) Can be defined 

as [ = ��, \ = ��� + �� + � The matrices evaluated at 

disease-free equilibrium point, V�(�X 0 �]), [ = ��X, \ =���] + �� + �Now, the Next generation matrix is defined as ^ = [\$�.  The basic reproduction numberis thedominant 

eigen value of the next generation matrix. Thus, "_ =(��X) (���] + �� + �)⁄ , Where �X = �� ���,⁄  and �] =?���Λ − ����@ ?����@⁄ Then "_ = ?�(��)�@ ?���(���Λ − ����)@⁄ . If "_ > 1 , then the 

disease is endemic and will persist in the prey species. If "_ = 1 then the disease is stable, and if "_ < 1 , then the 

disease is dies out from the prey species. 

Next, to investigate the stability analysis of equilibrium 
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points of the model (1)-(3) have to be represented by 

functions: 

��/�� = Λ − ��� − ���� − ��� ≡ [(�, �, �) 

��/�� = ��� − ���� − ��� − �� ≡ ^(�, �, �) 

��/�� = ����� + ����� − ��� ≡ b(�, �, �) 
The Jacobian matrix of the above system of functions is 

given by J(S, I, P) = dFf Fg FhGf Gg GhHf Hg Hh
k 

J(S, I, P)
= d−βI − p�P − μ� −βS −p�SβI βS − p�P − μ� − δ −p�Iqp�P qp�P qp�S + qp�I − μ�

k 

With help of matrix l, it is possible to analyze the local 

stability of equilibrium points. In this model, it is possible to 

verify that trivial equilibriumVW(0, 0, 0)is always stable. 

Theorem 1 [Trivial Equilibrium point] VW(0, 0, 0)  is 

locally asymptotically stable for all parameters. 

Proof: Evaluate the Jacobian matrix at VWl(VW) =
d−�� 0 00 −(�� + �) 00 0 −��

kThe Eigen values of the Jacobian 

matrix l  at VW  are −��, −(�� + �), −�� which is all eigen 

values are negative, hence trivial equilibrium point is locally 

asymptotically stable for all parameters. 

Theorem 2 [Axial equilibrium point] V�(�, 0, 0) =(Λ ��⁄ , 0, 0)  is locally asymptotically stable if ���� ≥�Λ and ���� ≥ ���Λ, otherwise unstable. 

Proof: The Jacobian matrix at axial equilibrium pointV�is 

given by l(�, 0, 0) = d−�� −�� −���0 �� − �� 00 0 ���� − ��
k 

axial equilibrium pointV� is stableif�� − �� < 0and���� −�� < 0 i.e. �(Λ ��⁄ ) − �� < 0 and ���(Λ ��⁄ ) − �� <0andhence���� ≥ �Λand���� ≥ ���Λholds true, otherwise 

unstable 

Theorem 3The predator-extinction /predator-free equilibrium 

point V�(�, �, 0) = (�� �⁄ , ?�Λ − ����@ ?���@,⁄ 0) is 

locally asymptotically stable if the following conditions are 

satisfied: 

i. ���� + ���� − �� < 0, 

ii. �� + �� + �� − �� > 0 & (�� + ��)(�� − ��) + ���� > 0 i.e. �?����� + ��(�Λ − ����)@ < �����, 

 �?��� − (�Λ − ����)@ < ���(�� + ��)and ���� < �Λ holds true. Otherwise unstable. 

Proof: The Jacobian matrix at V�l(�, �, 0) 

d−�� − �� −�� −����� �� − �� −���0 0 ���� + ���� − ��
k 

To find Eigen value of the Jacobian matrix 

p#�?l(V�) − q�@ 

r−�� − �� − q −�� −����� �� − �� − q −���0 0 ���� + ���� − �� − qr 
which results a polynomial. (���� + ���� − �� − q)?(−�� − �� − q)(�� − �� − q) +βsSI@ = 0 and can be written as 

(���� + ���� − �� − q) 

?(q + �� + ��)(q + �� − ��) + βsSI@ = 0. 
Now, the system is said to be stable if all Eigen values of 

the polynomial is negative, otherwise unstable. hence ���� + ���� − �� < 0 and the remaining Eigen values is the 

roots of quadratic equation (q + �� + ��)(q + �� − ��) + βsSI = 0, Routh Hourwith 

criterion results 

�� + �� + �� − �� > 0& (�� + ��)(�� − ��) + βsSI > 0, 

�?����� + ��(�Λ − ����)@ < �����, 
 �?��� − (�Λ − ����)@ < ���(�� + ��) and ���� < �Λ, holds true, Otherwise unstable. 

Theorem 4. [The Disease-free equilibrium point] V�(�, 0, �) = (�� ���,⁄ 0, ?���Λ − ����@ ?����@⁄ )  

is globally asymptotically stable if the following conditions 

are satisfied: 

i. �� − ��� − �� < 0, 
ii. ���+�� + �� − ���� > 0, t>� (���+��)(�� − ����) + qp��SP > 0 i.e. ��� − ���(���Λ − ����) < �������,  ���Λ > 0, &v ���� < ���Λ, holds true 

Proof: Evaluate the Jacobian matrix at V�l(�, 0, �) =
d−��� − �� −�� −���0 �� − ��� − �� 0���� ���� ���� − ��

k 

To find Eigen value of the Jacobian matrix p#�?l(V�) − q�@ 
 =. #. r−��� − �� − q −�� −���0 �� − ��� − �� − q 0���� ���� ���� − �� − qr 

(�� − ��� − �� − q)?(−��� − �� − q)(���� − �� −q) + qp��SP@ = 0 is stable if all Eigen values (roots) of this 

polynomial should be negative, otherwise unstable. �� − ��� − �� − q = 0 and (q + ���+��)(q + �� −����) + qp��SP = 0 

Therefore the system is to be stable, if the Eigen value  �� − ��� − �� < 0, and the remaining Eigen value 

obtained from the roots of the quadratic equation (q + ���+��)(q + �� − ����) + qp��SP = 0Now, Using 

Routh Hourwith criterion, ��� + �� +  �� − ���� > 0 t>�  (���+��)(�� − ����) + qp��SP > 0 holds true. 

Furthermore, ��� − ���(���Λ − ����) < �������,   ���Λ > 0, ���� < ���Λ, holds true, otherwise unstable 

Theorem 5 [Global stability] Endemic equilibrium point VY(�∗, �∗, �∗)is globally asymptotically stable. 

Proof: Let us define a liapunove function as follows 
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w(�, �, �� � m� �s � sZ�� 2⁄ 	 m��I � IZ��

2  

	m��P � PZ��/2 

�w ��⁄ � m��s � sZ�4ds dt⁄ ; 	 m��I � IZ�4dI dt⁄ ; 	
<��P � PZ�4�� ��⁄ ;         (4) 

Now substitute the model equation (1) - (3) into (4) 

dL dt⁄ � m��s � sZ�4Λ � ��� � ���� � ���; 

	m��I � IZ�4��� � ���� � ��� � ��; 
	m��P � PZ�4����� 	 ����� � ���; 

Take out S, I, P and put as change 

dL dt⁄ � m��s � sZ��s � sZ� {|Λ
S} � �� � ��� � ��~ 

	m��I � IZ��I � IZ�4�� � ��� � �� � �; 
	m��P � PZ��P � PZ�4���� 	 ���� � ��; 

By rearranging and take out negative sign from the bracket 

it could be obtained as 

dL dt⁄ � �m��s � sZ�� {� |Λ
S} 	 �� 	 ��� 	 ��~ 

�m��I � IZ��4��� 	 ��� 	 �� 	 �; 

�m��T � TZ���4����� � ���� 	 ��;� 

Thus it is possible to set<�, <�, <�, <�are non negative 

integers such that  dL dt⁄ 8 0 and endemic equilibrium point 

is globally stable. 

4. Simulation Study 

In this section, the numerical simulation of model 

equations (1) – (3) is carried out using the software DE 

Discover 2.6.4. For Simulation purpose, a set of meaningful 

values are assigned to the model parameters. A set of initial 

conditions are given to the model variables. These sets of 

parametric values are given in Tables 3 and Model equations 

and parameter is arranged for DEDiscover software in this 

way for simulation Study purpose. 

dS/dt=lambda-beta*S*I-p_1*S*P-mu_1*S//susceptible 

prey 

dI/dt=beta*S*I-p_2*I*P-mu_2*I-Delta*I // Infected prey 

dP/dt=q*p_1*S*P+q*p_2*I*P-mu_3*P // Predator 

Table 3. Parameter values used for Simulation. 

Parameter Value Reference 

� 11.2000 [1] 

� 30.0000 [1] 

� 1.2000 [1] 

�� 0.4000 [1] 

�� 0.6000 [1] 

� 0.4000 [1] 

�� 0.0100 Assumed 

�� 0.0800 [1] 

�� 0.0200 Assumed 

Using the parameter values given in Table 3 and the initial 

conditions ��0� � 40, ��0� � 25, ��0� � 8 in the model 

equations (1) – (3) is simulated and the results are given in 

Figures 2-5. 

 
Figure 2. Time series plot for prey-predator population with �� ! ��. 

From Figure 2, it is observed that initially infected preys are increasing in number meaning more infection and predation 

occurs on susceptible prey that leads rapid decreasing on the number of susceptible prey, but the predator continue consuming 

the prey species and eventually the infected prey species were abundant in the system due to disease. This situation creates 
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great chance for predator to consume infected prey. however the predators are increasing in number for some time and will 

decrease in the long run. Then there will be a chance for susceptible prey to grow, produce new of springs and the system will 

be stable. 

 
Figure 3. Time series plot for prey-predator population with�� ≤ ��. 

In Figure 3, Shows the number of predators increased due to 

different consumption rates of both infected and susceptible 

prey. The infected and susceptible prey are decreasing in the 

graph due to prey is suffering from predation and infectious 

disease for some time. In the long run the system may be stable 

due to similar reason in Figure 2. 

 

Figure 4. Time series plot for prey-predator population with different initial conditions. 

Figure 4, shows that infected preys are highly exposed for 

predation and also they are suffering from death rate due to 

infection. Eventually the infected prey may be cleared out 

from the system and the disease die out. The Susceptible 

preys become healthy, grow well, and Contribute stability in 

the prey-predator system. The susceptible prey and predator 
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graph depicts that the predator-prey system is stable after some time. 

 

Figure 5. Time series plot for prey-predator population with different initial conditions. 

Figure 5 show that the prey-predator of Susceptible-

infected prey decrease through time. eventually the 

population of all kind may converge to the same number Due 

to predators attack and infectious Disease. The total prey-

predator population indicate oscillations and after some time 

the population of prey species are minimize in number or 

remain stable depending on the situation of the populations. 

5. Conclusions 

Based on biologically valid and meaningful assumptions, 

Susceptible-infected prey and predator of eco-epidemiological 

model is constructed. All possible Equilibrium points are 

computed. Local and global stability analysis of Disease-free 

and endemic equilibrium points are performed. 

In simulation study, it is observed that the prey species is 

decreasing due to infectious disease but this facilitate the 

opportunity of predator to consume the prey easily which 

turn increase in predator. On the other hand, when Infected 

prey completely eaten up by predators, the susceptible prey 

had no time to be infected by infective prey. Thus the 

infectious disease die out and susceptible prey would 

increase in number which leads the prey-predator system 

wait stable for some time. 
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